Part Number Hot Search : 
001547 41HFR200 ISL28470 M12531MG C023M GP1L55 TC4S69F 225722
Product Description
Full Text Search
 

To Download DSPIC30F5011 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DSPIC30F5011, dsPIC30F5013 Data Sheet
High-Performance Digital Signal Controllers
2004 Microchip Technology Inc.
Preliminary
DS70116C
Note the following details of the code protection feature on Microchip devices: * * Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."
*
* *
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.
Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper.
Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro(R) 8-bit MCUs, KEELOQ(R) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
DS70116C-page ii
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
DSPIC30F5011/5013 High Performance Digital Signal Controllers
High Performance Modified RISC CPU:
* * * * * * * * * * Modified Harvard architecture C compiler optimized instruction set architecture Flexible addressing modes 84 base instructions 24-bit wide instructions, 16-bit wide data path 66 Kbytes on-chip Flash program space 4 Kbytes of on-chip data RAM 1 Kbytes of non-volatile data EEPROM 16 x 16-bit working register array Up to 30 MIPs operation: - DC to 40 MHz external clock input - 4 MHz-10 MHz oscillator input with PLL active (4x, 8x, 16x) * Up to 41 interrupt sources: - 8 user selectable priority levels - 5 external interrupt sources - 4 processor traps * I2CTM module supports Multi-Master/Slave mode and 7-bit/10-bit addressing * Two addressable UART modules with FIFO buffers * Two CAN bus modules compliant with CAN 2.0B standard
Analog Features:
* 12-bit Analog-to-Digital Converter (A/D) with: - 100 Ksps conversion rate - Up to 16 input channels - Conversion available during Sleep and Idle * Programmable Low Voltage Detection (PLVD) * Programmable Brown-out Detection and Reset generation
Special Microcontroller Features:
* Enhanced Flash program memory: - 10,000 erase/write cycle (min.) for industrial temperature range, 100K (typical) * Data EEPROM memory: - 100,000 erase/write cycle (min.) for industrial temperature range, 1M (typical) * Self-reprogrammable under software control * Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) * Flexible Watchdog Timer (WDT) with on-chip low power RC oscillator for reliable operation * Fail-Safe Clock Monitor operation: - Detects clock failure and switches to on-chip low power RC oscillator * Programmable code protection * In-Circuit Serial ProgrammingTM (ICSPTM) * Selectable Power Management modes: - Sleep, Idle and Alternate Clock modes
DSP Features:
* Dual data fetch * Modulo and Bit-reversed modes * Two 40-bit wide accumulators with optional saturation logic * 17-bit x 17-bit single cycle hardware fractional/ integer multiplier * All DSP instructins are single cycle - Multiply-Accumulate (MAC) operation * Single cycle 16 shift
Peripheral Features:
* High current sink/source I/O pins: 25 mA/25 mA * Five 16-bit timers/counters; optionally pair up 16bit timers into 32-bit timer modules * 16-bit Capture input functions * 16-bit Compare/PWM output functions: * Data Converter Interface (DCI) supports common audio Codec protocols, including I2S and AC'97 * 3-wire SPITM modules (supports 4 Frame modes)
CMOS Technology:
* * * * Low power, high speed Flash technology Wide operating voltage range (2.5V to 5.5V) Industrial and Extended temperature ranges Low power consumption
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 1
DSPIC30F5011/5013
DSPIC30F5011/5013 Controller Family
Device DSPIC30F5011 dsPIC30F5013 Pins 64 80 Output SRAM EEPROM Timer Input Codec A/D 12-bit Comp/Std Bytes Bytes 16-bit Cap Interface 100 Ksps Bytes Instructions PWM 66K 66K 22K 22K 4096 4096 1024 1024 5 5 8 8 8 8 AC'97, I2S AC'97, I2S 16 ch 16 ch UART SPITM I2CTM 1 1 CAN 2 2 Program Memory
2 2
2 2
Pin Diagrams
64-Pin TQFP
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
CSDO/RG13 CSDI/RG12 CSCK/RG14 C2RX/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VSS OC8/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 EMUD2/OC2/RD1
COFS/RG15 T2CK/RC1 T3CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 AN3/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 AN1/VREF-/CN3/RB1 AN0/VREF+/CN2/RB0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DSPIC30F5011
EMUC1/SOSCO/T1CK/CN0/RC14 EMUD1/SOSCI/T4CK/CN1/RC13 EMUC2/OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKI VDD SCL/RG2 SDA/RG3 EMUC3/SCK1/INT0/RF6 U1RX/SDI1/RF2 EMUD3/U1TX/SDO1/RF3
Note:
Pinout subject to change.
Note:
For descriptions of individual pins, see Section 1.0.
PGC/EMUC/AN6/OCFA/RB6 PGD/EMUD/AN7/RB7 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/CN17/RF4 U2TX/CN18/RF5
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
DS70116C-page 2
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
Pin Diagrams (Continued)
80-Pin TQFP
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
CN23/RA7 CN22/RA6 C2RX/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VSS
IC5/RD12 OC4/RD3 OC3/RD2 EMUD2/OC2/RD1
OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13
OC8/CN16/RD7
CSDO/RG13
CSCK/RG14
CSDI/RG12
OC7/CN15/RD6
COFS/RG15 T2CK/RC1 T3CK/RC2 T4CK/RC3 T5CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD INT1/RA12 INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC/EMUC/AN1/CN3/RB1 PGD/EMUD/AN0/CN2/RB0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 23 24 25 26 27 28 29 30 31 32 33 21 34 35 36 37 38 39 22
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40
EMUC1/SOSCO/T1CK/CN0/RC14 EMUD1/SOSCI/CN1/RC13 EMUC2/OC1/RD0 IC4/RD11 IC3/RD10 IC2/RD9 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKI VDD SCL/RG2 SDA/RG3 EMUC3/SCK1/INT0/RF6 SDI1/RF7 EMUD3/SDO1/RF8 U1RX/RF2 U1TX/RF3
dsPIC30F5013
Note:
Pinout subject to change.
Note:
For descriptions of individual pins, see Section 1.0.
2004 Microchip Technology Inc.
Preliminary
AN15/OCFB/CN12/RB15
U2RX/CN17/RF4
U2TX/CN18/RF5
IC7/CN20/RD14
IC8/CN21/RD15
AN6/OCFA/RB6
VREF+/RA10
AN11/RB11
AN8/RB8
AN7/RB7
VREF-/RA9
AN9/RB9
AN12/RB12
AN13/RB13
AN10/RB10
AN14/RB14
AVDD
AVSS
VDD
VSS
DS70116C-page 3
DSPIC30F5011/5013
Table of Contents
1.0 Device Overview .......................................................................................................................................................................... 5 2.0 CPU Architecture Overview........................................................................................................................................................ 11 3.0 Memory Organization ................................................................................................................................................................. 21 4.0 Address Generator Units ............................................................................................................................................................ 33 5.0 Interrupts .................................................................................................................................................................................... 39 6.0 Flash Program Memory .............................................................................................................................................................. 45 7.0 Data EEPROM Memory ............................................................................................................................................................. 51 8.0 I/O Ports ..................................................................................................................................................................................... 57 9.0 Timer1 Module ........................................................................................................................................................................... 63 10.0 Timer2/3 Module ........................................................................................................................................................................ 67 11.0 Timer4/5 Module ........................................................................................................................................................................ 73 12.0 Input Capture Module ................................................................................................................................................................. 77 13.0 Output Compare Module ............................................................................................................................................................ 81 14.0 SPI Module ................................................................................................................................................................................. 85 15.0 I2C Module ................................................................................................................................................................................. 89 16.0 Universal Asynchronous Receiver Transmitter (UART) Module ................................................................................................ 97 17.0 CAN Module ............................................................................................................................................................................. 105 18.0 Data Converter Interface (DCI) Module.................................................................................................................................... 117 19.0 12-bit Analog-to-Digital Converter (A/D) Module ...................................................................................................................... 127 20.0 System Integration ................................................................................................................................................................... 135 21.0 Instruction Set Summary .......................................................................................................................................................... 151 22.0 Development Support............................................................................................................................................................... 159 23.0 Electrical Characteristics .......................................................................................................................................................... 165 24.0 Packaging Information.............................................................................................................................................................. 205 Index .................................................................................................................................................................................................. 209 On-Line Support................................................................................................................................................................................. 215 Systems Information and Upgrade Hot Line ...................................................................................................................................... 215 Reader Response .............................................................................................................................................................................. 216 Product Identification System............................................................................................................................................................. 217
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: * Microchip's Worldwide Web site; http://www.microchip.com * Your local Microchip sales office (see last page) * The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277 When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.
Customer Notification System
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.
DS70116C-page 4
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
1.0 DEVICE OVERVIEW
This document contains specific information for the DSPIC30F5011/5013 Digital Signal Controller (DSC) devices. The DSPIC30F5011/5013 devices contain extensive Digital Signal Processor (DSP) functionality within a high performance 16-bit microcontroller (MCU) architecture. Figure 1-1 and Figure 1-2 show device block diagrams for DSPIC30F5011 and dsPIC30F5013 respectively.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 5
DSPIC30F5011/5013
FIGURE 1-1: DSPIC30F5011 BLOCK DIAGRAM
Y Data Bus X Data Bus 16 Interrupt Controller PSV & Table Data Access 24 Control Block 24 24 PCU PCH PCL Program Counter Loop Stack Control Control Logic Logic 16 16 16 Data Latch X Data RAM (4 Kbytes) Address Latch 16 X RAGU X WAGU 16
8
16
Data Latch Y Data RAM (4 Kbytes) Address Latch 16 Y AGU
16
Address Latch Program Memory (144 Kbytes) Data EEPROM (4 Kbytes) Data Latch
Effective Address 16
AN0/CN2/RB0 AN1/CN3/RB1 AN2/SS1/LVDIN/CN4/RB2 AN3/CN5/RB3 AN4/CN6/RB4 AN5/CN7/RB5 PGC/EMUC/AN6/OCFA/RB6 PGD/EMUD/AN7/RB7 AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 PORTB
ROM Latch 24 IR 16
16
16 16 x 16 W Reg Array PORTC 16 16
Decode Instruction Decode & Control Control Signals to Various Blocks OSC1/CLKI Timing Generation DSP Engine
T2CK/RC1 T3CK/RC2 EMUD1/SOSCI/CN1/RC13 EMUC1/SOSCO/T1CK/CN0/RC14 OSC2/CLKO/RC15
Power-up Timer Oscillator Start-up Timer POR/BOR Reset
Divide Unit
ALU<16> 16 16
MCLR
VDD, VSS AVDD, AVSS
Watchdog Timer Low Voltage Detect
EMUC2/OC1/RD0 EMUD2/OC2/RD1 OC3/RD2 OC4/RD3 OC5/CN13/RD4 OC6/CN14/RD5 OC7/CN15/RD6 OC8/CN16/RD7 IC1/RD8 IC2/RD9 IC3/RD10 IC4/RD11 PORTD
CAN1, CAN2
12-bit ADC
Input Capture Module
Output Compare Module
I2CTM
Timers
DCI
SPI1, SPI2
UART1, UART2 PORTF
C1RX/RF0 C1TX/RF1 U1RX/SDI1/RF2 EMUD3/U1TX/SDO1/RF3 U2RX/CN17/RF4 U2TX/CN18/RF5 EMUC3/SCK1/INT0/RF6
C2RX/RG0 C2TX/RG1 SCL/RG2 SDA/RG3 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 SS2/CN11/RG9 CSDI/RG12 CSDO/RG13 CSCK/RG14 COFS/RG15 PORTG
DS70116C-page 6
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 1-2: dsPIC30F5013 BLOCK DIAGRAM
Y Data Bus X Data Bus 16 Interrupt Controller PSV & Table Data Access 24 Control Block 24 24 PCU PCH PCL Program Counter Loop Stack Control Control Logic Logic 16 16 16 Data Latch X Data RAM (4 Kbytes) Address Latch 16 X RAGU X WAGU 16 CN22/RA6 CN23/RA7 VREF-/RA9 VREF+/RA10 INT1/RA12 INT2/RA13 INT3/RA14 INT4/RA15 16 PORTA AN0/CN2/RB0 AN1/CN3/RB1 AN2/SS1/LVDIN/CN4/RB2 AN3/CN5/RB3 AN4/CN6/RB4 AN5/CN7/RB5 PGC/EMUC/AN6/OCFA/RB6 PGD/EMUD/AN7/RB7 AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 PORTB IR 16 16 x 16 W Reg Array 16 16 PORTC EMUC2/OC1/RD0 EMUD2/OC2/RD1 OC3/RD2 OC4/RD3 OC5/CN13/RD4 OC6/CN14/RD5 OC7/CN15/RD6 OC8/CN16/RD7 IC1/RD8 IC2/RD9 IC3/RD10 IC4/RD11 IC5/RD12 IC6/CN19/RD13 IC7/CN20/RD14 IC8/CN21/RD15 PORTD Input Capture Module Output Compare Module C1RX/RF0 C1TX/RF1 U1RX/RF2 U1TX/RF3 U2RX/CN17/RF4 U2TX/CN18/RF5 EMUC3/SCK1/INT0/RF6 SDI1/RF7 EMUD3/SDO1/RF8 PORTF C2RX/RG0 C2TX/RG1 SCL/RG2 SDA/RG3 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 SS2/CN11/RG9 CSDI/RG12 CSDO/RG13 CSCK/RG14 COFS/RG15 PORTG 16 T2CK/RC1 T3CK/RC2 T4CK/RC3 T5CK/RC4 EMUD1/SOSCI/CN1/RC13 EMUC1/SOSCO/T1CK/CN0/RC14 OSC2/CLKO/RC15
8
16
Data Latch Y Data RAM (4 Kbytes) Address Latch 16 Y AGU
Address Latch Program Memory (144 Kbytes) Data EEPROM (4 Kbytes) Data Latch
Effective Address 16
ROM Latch 24
16
Decode Instruction Decode & Control Control Signals to Various Blocks OSC1/CLKI Timing Generation DSP Engine
Power-up Timer Oscillator Start-up Timer POR/BOR Reset
Divide Unit
ALU<16> 16 16
MCLR
VDD, VSS AVDD, AVSS
Watchdog Timer Low Voltage Detect
CAN1, CAN2
12-bit ADC
I2C
Timers
DCI
SPI1, SPI2
UART1, UART2
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 7
DSPIC30F5011/5013
Table 1-1 provides a brief description of device I/O pinouts and the functions that may be multiplexed to a port pin. Multiple functions may exist on one port pin. When multiplexing occurs, the peripheral module's functional requirements may force an override of the data direction of the port pin.
TABLE 1-1:
PINOUT I/O DESCRIPTIONS
Pin Type I Buffer Type Analog Description Analog input channels. AN0 and AN1 are also used for device programming data and clock inputs, respectively. Positive supply for analog module. Ground reference for analog module. External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs. Data Converter Interface Frame Synchronization pin. Data Converter Interface Serial Clock input/output pin. Data Converter Interface Serial data input pin. Data Converter Interface Serial data output pin. CAN1 Bus Receive pin. CAN1 Bus Transmit pin. CAN2 Bus Receive pin. CAN2 Bus Transmit pin ICD Primary Communication Channel data input/output pin. ICD Primary Communication Channel clock input/output pin. ICD Secondary Communication Channel data input/output pin. ICD Secondary Communication Channel clock input/output pin. ICD Tertiary Communication Channel data input/output pin. ICD Tertiary Communication Channel clock input/output pin. ICD Quaternary Communication Channel data input/output pin. ICD Quaternary Communication Channel clock input/output pin. Capture inputs 1 through 8. External interrupt 0. External interrupt 1. External interrupt 2. External interrupt 3. External interrupt 4. Low Voltage Detect Reference Voltage input pin. Master Clear (Reset) input or programming voltage input. This pin is an active low Reset to the device. Compare Fault A input (for Compare channels 1, 2, 3 and 4). Compare Fault B input (for Compare channels 5, 6, 7 and 8). Compare outputs 1 through 8.
Pin Name AN0-AN15
AVDD AVSS CLKI CLKO
P P I O
P P ST/CMOS --
CN0-CN23
I
ST
COFS CSCK CSDI CSDO C1RX C1TX C2RX C2TX EMUD EMUC EMUD1 EMUC1 EMUD2 EMUC2 EMUD3 EMUC3 IC1-IC8 INT0 INT1 INT2 INT3 INT4 LVDIN MCLR OCFA OCFB OC1-OC8
I/O I/O I O I O I O I/O I/O I/O I/O I/O I/O I/O I/O I I I I I I I I/P I I O
ST ST ST -- ST -- ST -- ST ST ST ST ST ST ST ST ST ST ST ST ST ST Analog ST ST ST --
Legend:
CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input
Analog = Analog input O = Output P = Power
DS70116C-page 8
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Type I I/O Buffer Type ST/CMOS -- Description Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. In-Circuit Serial Programming data input/output pin. In-Circuit Serial Programming clock input pin. PORTA is a bidirectional I/O port. Pin Name OSC1 OSC2
PGD PGC RA6-RA7 RA9-RA10 RA12-RA15 RB0-RB15 RC1-RC4 RC13-RC15 RD0-RD15 RF0-RF8 RG0-RG3 RG6-RG9 RG12-RG15 SCK1 SDI1 SDO1 SS1 SCK2 SDI2 SDO2 SS2 SCL SDA SOSCO SOSCI T1CK T2CK T3CK T4CK T5CK U1RX U1TX U1ARX U1ATX U2RX U2TX VDD VSS VREF+ VREF-
I/O I I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I O I I/O I O I I/O I/O O I I I I I I I O I O I O P P I I
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST -- ST ST ST -- ST ST ST -- ST/CMOS ST ST ST ST ST ST -- ST -- ST -- -- -- Analog Analog
PORTB is a bidirectional I/O port. PORTC is a bidirectional I/O port. PORTD is a bidirectional I/O port. PORTF is a bidirectional I/O port. PORTG is a bidirectional I/O port.
Synchronous serial clock input/output for SPI1. SPI1 Data In. SPI1 Data Out. SPI1 Slave Synchronization. Synchronous serial clock input/output for SPI2. SPI2 Data In. SPI2 Data Out. SPI2 Slave Synchronization. Synchronous serial clock input/output for I2C. Synchronous serial data input/output for I2C. 32 kHz low power oscillator crystal output. 32 kHz low power oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. UART1 Receive. UART1 Transmit. UART1 Alternate Receive. UART1 Alternate Transmit. UART2 Receive. UART2 Transmit. Positive supply for logic and I/O pins. Ground reference for logic and I/O pins. Analog Voltage Reference (High) input. Analog Voltage Reference (Low) input.
Legend:
CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input
Analog = Analog input O = Output P = Power
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 9
DSPIC30F5011/5013
NOTES:
DS70116C-page 10
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
2.0
2.1
CPU ARCHITECTURE OVERVIEW
Core Overview
Overhead-free circular buffers (modulo addressing) are supported in both X and Y address spaces. This is primarily intended to remove the loop overhead for DSP algorithms. The X AGU also supports bit-reversed addressing on destination effective addresses to greatly simplify input or output data reordering for radix-2 FFT algorithms. Refer to Section 4.0 for details on modulo and bit-reversed addressing. The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct, Register Indirect, Register Offset and Literal Offset Addressing modes. Instructions are associated with predefined Addressing modes, depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, 3-operand instructions are supported, allowing C = A+B operations to be executed in a single cycle. A DSP engine has been included to significantly enhance the core arithmetic capability and throughput. It features a high speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. Data in the accumulator or any working register can be shifted up to 15 bits right, or 16 bits left in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC class of instructions can concurrently fetch two data operands from memory while multiplying two W registers. To enable this concurrent fetching of data operands, the data space has been split for these instructions and linear for all others. This has been achieved in a transparent and flexible manner, by dedicating certain working registers to each address space for the MAC class of instructions. The core does not support a multi-stage instruction pipeline. However, a single stage instruction pre-fetch mechanism is used, which accesses and partially decodes instructions a cycle ahead of execution, in order to maximize available execution time. Most instructions execute in a single cycle with certain exceptions. The core features a vectored exception processing structure for traps and interrupts, with 62 independent vectors. The exceptions consist of up to 8 traps (of which 4 are reserved) and 54 interrupts. Each interrupt is prioritized based on a user assigned priority between 1 and 7 (1 being the lowest priority and 7 being the highest), in conjunction with a predetermined `natural order'. Traps have fixed priorities ranging from 8 to 15.
This section contains a brief overview of the CPU architecture of the dsPIC30F. For additional hardware and programming information, please refer to the dsPIC30F Family Reference Manual and the dsPIC30F Programmer's Reference Manual respectively. The core has a 24-bit instruction word. The Program Counter (PC) is 23-bits wide with the Least Significant (LS) bit always clear (refer to Section 3.1), and the Most Significant (MS) bit is ignored during normal program execution, except for certain specialized instructions. Thus, the PC can address up to 4M instruction words of user program space. An instruction pre-fetch mechanism is used to help maintain throughput. Program loop constructs, free from loop count management overhead, are supported using the DO and REPEAT instructions, both of which are interruptible at any point. The working register array consists of 16 x 16-bit registers, each of which can act as data, address or offset registers. One working register (W15) operates as a software stack pointer for interrupts and calls. The data space is 64 Kbytes (32K words) and is split into two blocks, referred to as X and Y data memory. Each block has its own independent Address Generation Unit (AGU). Most instructions operate solely through the X memory, AGU, which provides the appearance of a single unified data space. The Multiply-Accumulate (MAC) class of dual source DSP instructions operate through both the X and Y AGUs, splitting the data address space into two parts (see Section 3.2). The X and Y data space boundary is device specific and cannot be altered by the user. Each data word consists of 2 bytes, and most instructions can address data either as words or bytes. There are two methods of accessing data stored in program memory: * The upper 32 Kbytes of data space memory can be mapped into the lower half (user space) of program space at any 16K program word boundary, defined by the 8-bit Program Space Visibility Page (PSVPAG) register. This lets any instruction access program space as if it were data space, with a limitation that the access requires an additional cycle. Moreover, only the lower 16 bits of each instruction word can be accessed using this method. * Linear indirect access of 32K word pages within program space is also possible using any working register, via table read and write instructions. Table read and write instructions can be used to access all 24 bits of an instruction word.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 11
DSPIC30F5011/5013
2.2 Programmer's Model
2.2.1
The programmer's model is shown in Figure 2-1 and consists of 16 x 16-bit working registers (W0 through W15), 2 x 40-bit accumulators (AccA and AccB), STATUS register (SR), Data Table Page register (TBLPAG), Program Space Visibility Page register (PSVPAG), DO and REPEAT registers (DOSTART, DOEND, DCOUNT and RCOUNT) and Program Counter (PC). The working registers can act as data, address or offset registers. All registers are memory mapped. W0 acts as the W register for file register addressing. Some of these registers have a shadow register associated with each of them, as shown in Figure 2-1. The shadow register is used as a temporary holding register and can transfer its contents to or from its host register upon the occurrence of an event. None of the shadow registers are accessible directly. The following rules apply for transfer of registers into and out of shadows. * PUSH.S and POP.S W0, W1, W2, W3, SR (DC, N, OV, Z and C bits only) are transferred. * DO instruction DOSTART, DOEND, DCOUNT shadows are pushed on loop start, and popped on loop end. When a byte operation is performed on a working register, only the Least Significant Byte of the target register is affected. However, a benefit of memory mapped working registers is that both the Least and Most Significant Bytes can be manipulated through byte wide data memory space accesses.
SOFTWARE STACK POINTER/ FRAME POINTER
The dsPIC(R) devices contain a software stack. W15 is the dedicated software Stack Pointer (SP), and will be automatically modified by exception processing and subroutine calls and returns. However, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies the reading, writing and manipulation of the stack pointer (e.g., creating stack frames). Note: In order to protect against misaligned stack accesses, W15<0> is always clear.
W15 is initialized to 0x0800 during a Reset. The user may reprogram the SP during initialization to any location within data space. W14 has been dedicated as a stack frame pointer as defined by the LNK and ULNK instructions. However, W14 can be referenced by any instruction in the same manner as all other W registers.
2.2.2
STATUS REGISTER
The dsPIC core has a 16-bit STATUS register (SR), the LS Byte of which is referred to as the SR Low byte (SRL) and the MS Byte as the SR High byte (SRH). See Figure 2-1 for SR layout. SRL contains all the MCU ALU operation status flags (including the Z bit), as well as the CPU Interrupt Priority Level status bits, IPL<2:0> and the Repeat Active status bit, RA. During exception processing, SRL is concatenated with the MS Byte of the PC to form a complete word value which is then stacked. The upper byte of the STATUS register contains the DSP Adder/Subtracter status bits, the DO Loop Active bit (DA) and the Digit Carry (DC) status bit.
2.2.3
PROGRAM COUNTER
The program counter is 23-bits wide; bit 0 is always clear. Therefore, the PC can address up to 4M instruction words.
DS70116C-page 12
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 2-1: PROGRAMMER'S MODEL
D15 W0/WREG W1 W2 W3 W4 DSP Operand Registers W5 W6 W7 W8 DSP Address Registers W9 W10 W11 W12/DSP Offset W13/DSP Write Back W14/Frame Pointer W15/Stack Pointer Working Registers
DO Shadow
D0
PUSH.S Shadow
Legend
SPLIM AD39 DSP Accumulators PC22 AccA AccB PC0 0 7 TABPAG TBLPAG 7 PSVPAG 0 Program Space Visibility Page Address 15 RCOUNT 15 DCOUNT 22 DOSTART 22 DOEND 15 CORCON 0 0 0 0 0 Data Table Page Address AD31
Stack Pointer Limit Register AD15 AD0
Program Counter
REPEAT Loop Counter
DO Loop Counter
DO Loop Start Address
DO Loop End Address
Core Configuration Register
OA
OB
SA
SB OAB SAB DA SRH
DC IPL2 IPL1 IPL0 RA
N
OV
Z
C
Status Register
SRL
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 13
DSPIC30F5011/5013
2.3 Divide Support
The dsPIC devices feature a 16/16-bit signed fractional divide operation, as well as 32/16-bit and 16/16-bit signed and unsigned integer divide operations, in the form of single instruction iterative divides. The following instructions and data sizes are supported: 1. 2. 3. 4. 5. DIVF - 16/16 signed fractional divide DIV.sd - 32/16 signed divide DIV.ud - 32/16 unsigned divide DIV.sw - 16/16 signed divide DIV.uw - 16/16 unsigned divide The divide instructions must be executed within a REPEAT loop. Any other form of execution (e.g., a series of discrete divide instructions) will not function correctly because the instruction flow depends on RCOUNT. The divide instruction does not automatically set up the RCOUNT value and it must, therefore, be explicitly and correctly specified in the REPEAT instruction as shown in Table 2-1 (REPEAT will execute the target instruction {operand value+1} times). The REPEAT loop count must be setup for 18 iterations of the DIV/ DIVF instruction. Thus, a complete divide operation requires 19 cycles. Note: The divide flow is interruptible. However, the user needs to save the context as appropriate.
The 16/16 divides are similar to the 32/16 (same number of iterations), but the dividend is either zero-extended or sign-extended during the first iteration.
TABLE 2-1:
Instruction DIVF DIV.sd DIV.sw or DIV.s DIV.ud DIV.uw or DIV.u
DIVIDE INSTRUCTIONS
Function Signed fractional divide: Wm/Wn W0; Rem W1 Signed divide: (Wm+1:Wm)/Wn W0; Rem W1 Signed divide: Wm/Wn W0; Rem W1 Unsigned divide: (Wm+1:Wm)/Wn W0; Rem W1 Unsigned divide: Wm/Wn W0; Rem W1
DS70116C-page 14
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
2.4 DSP Engine
The DSP engine consists of a high speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic). The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations, which require no additional data. These instructions are ADD, SUB and NEG. The dsPIC30F is a single-cycle instruction flow architecture, threfore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC). The DSP engine has various options selected through various bits in the CPU Core Configuration register (CORCON), as listed below: 1. 2. 3. 4. 5. 6. 7. Fractional or integer DSP multiply (IF). Signed or unsigned DSP multiply (US). Conventional or convergent rounding (RND). Automatic saturation on/off for AccA (SATA). Automatic saturation on/off for AccB (SATB). Automatic saturation on/off for writes to data memory (SATDW). Accumulator Saturation mode selection (ACCSAT). Note: For CORCON layout, see Table 4-2.
A block diagram of the DSP engine is shown in Figure 2-2.
TABLE 2-2:
DSP INSTRUCTION SUMMARY
Algebraic Operation A=0 A = (x - y)2 A = A + (x - y) A = A + (x * y) A=A+ x2 No change in A A=x*y A=-x*y A=A-x*y
2
Instruction CLR ED EDAC MAC MAC MOVSAC MPY MPY.N MSC
ACC WB? Yes No No Yes No Yes No No Yes
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 15
DSPIC30F5011/5013
FIGURE 2-2: DSP ENGINE BLOCK DIAGRAM
40
40-bit Accumulator A 40-bit Accumulator B Saturate Adder Negate
Carry/Borrow Out Carry/Borrow In
S a 40 Round t 16 u Logic r a t e
40
40
40 Barrel Shifter
16
40
Sign-Extend
Y Data Bus
32 Zero Backfill 33 32
16
17-bit Multiplier/Scaler 16 16
To/From W Array
DS70116C-page 16
Preliminary
2004 Microchip Technology Inc.
X Data Bus
DSPIC30F5011/5013
2.4.1 MULTIPLIER 2.4.2.1
The 17 x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17 x 17-bit multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the MSB is defined as a sign bit. Generally speaking, the range of an N-bit two's complement integer is -2N-1 to 2N-1 - 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including `0'. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,645 (0x7FFF FFFF). When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSB is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to (1 - 21-N). For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including `0' and has a precision of 3.01518x10-5. In Fractional mode, the 16x16 multiply operation generates a 1.31 product which has a precision of 4.65661 x 10-10. The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies. The MUL instruction may be directed to use byte or word sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.
Adder/Subtracter, Overflow and Saturation
The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true, or complement data into the other input. In the case of addition, the carry/borrow input is active high and the other input is true data (not complemented), whereas in the case of subtraction, the carry/borrow input is active low and the other input is complemented. The adder/subtracter generates overflow status bits SA/SB and OA/OB, which are latched and reflected in the STATUS register: * Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed. * Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits bits are not identical to each other. The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the overflow status bits described above, and the SATA/B (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate. Six Status register bits have been provided to support saturation and overflow; they are: 1. 2. 3. OA: AccA overflowed into guard bits OB: AccB overflowed into guard bits SA: AccA saturated (bit 31 overflow and saturation) or AccA overflowed into guard bits and saturated (bit 39 overflow and saturation) SB: AccB saturated (bit 31 overflow and saturation) or AccB overflowed into guard bits and saturated (bit 39 overflow and saturation) OAB: Logical OR of OA and OB SAB: Logical OR of SA and SB
2.4.2
DATA ACCUMULATORS AND ADDER/SUBTRACTER
4.
The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter, prior to accumulation.
5. 6.
The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding overflow trap flag enable bit (OVATEN, OVBTEN) in the INTCON1 register (refer to Section 5.0) is set. This allows the user to take immediate action, for example, to correct system gain.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 17
DSPIC30F5011/5013
The SA and SB bits are modified each time data passes through the adder/subtracter but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation, or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled. The overflow and saturation status bits can optionally be viewed in the STATUS register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators. The device supports three saturation and overflow modes: 1. Bit 39 Overflow and Saturation: When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF), or maximally negative 9.31 value (0x8000000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as `super saturation' and provides protection against erroneous data, or unexpected algorithm problems (e.g., gain calculations). Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF), or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set). Bit 39 Catastrophic Overflow: The bit 39 overflow status bit from the adder is used to set the SA or SB bit which remain set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.
2.4.2.2
Accumulator `Write Back'
The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following Addressing modes are supported: 1. W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction. [W13]+=2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).
2.
2.4.2.3
Round Logic
The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the LS Word is simply discarded. Conventional rounding takes bit 15 of the accumulator, zero-extends it and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value will tend to be biased slightly positive. Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. If this is the case, the LS bit (bit 16 of the accumulator) of ACCxH is examined. If it is `1', ACCxH is incremented. If it is `0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme will remove any rounding bias that may accumulate. The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus (subject to data saturation, see Section 2.4.2.4). Note that for the MAC class of instructions, the accumulator write back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.
2.
3.
DS70116C-page 18
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
2.4.2.4 Data Space Write Saturation 2.4.3 BARREL SHIFTER
In addition to adder/subtracter saturation, writes to data space may also be saturated but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory. If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly, For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The MS bit of the source (bit 39) is used to determine the sign of the operand being tested. If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions. The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators, or the X bus (to support multi-bit shifts of register or memory data). The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value will shift the operand right. A negative value will shift the operand left. A value of `0' will not modify the operand. The barrel shifter is 40-bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts, and bit positions 0 to 16 for left shifts.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 19
DSPIC30F5011/5013
NOTES:
DS70116C-page 20
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
3.0
3.1
MEMORY ORGANIZATION
Program Address Space
FIGURE 3-1:
PROGRAM SPACE MEMORY MAP
Reset - GOTO Instruction Reset - Target Address 000000 000002 000004
The program address space is 4M instruction words. It is addressable by a 24-bit value from either the 23-bit PC, table instruction Effective Address (EA), or data space EA, when program space is mapped into data space as defined by Table 3-1. Note that the program space address is incremented by two between successive program words in order to provide compatibility with data space addressing. User program space access is restricted to the lower 4M instruction word address range (0x000000 to 0x7FFFFE) for all accesses other than TBLRD/TBLWT, which use TBLPAG<7> to determine user or configuration space access. In Table 3-1, Program Space Address Construction, bit 23 allows access to the Device ID, the User ID and the configuration bits. Otherwise, bit 23 is always clear.
Vector Tables Interrupt Vector Table
User Memory Space
Reserved Alternate Vector Table User Flash Program Memory (22K instructions)
00007E 000080 000084 0000FE 000100
Reserved (Read `0's) Data EEPROM (1 Kbyte)
00AFFE 00B000 7FFBFE 7FFC00
7FFFFE 800000
Reserved
Configuration Memory Space
UNITID (32 instr.)
8005BE 8005C0 8005FE 800600
Reserved Device Configuration Registers F7FFFE F80000 F8000E F80010
Reserved
DEVID (2)
FEFFFE FF0000 FFFFFE
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 21
DSPIC30F5011/5013
TABLE 3-1: PROGRAM SPACE ADDRESS CONSTRUCTION
Access Space User User (TBLPAG<7> = 0) Configuration (TBLPAG<7> = 1) User 0 Program Space Address <23> 0 TBLPAG<7:0> TBLPAG<7:0> PSVPAG<7:0> <22:16> <15> PC<22:1> Data EA<15:0> Data EA<15:0> Data EA<14:0> <14:1> <0> 0 Access Type Instruction Access TBLRD/TBLWT TBLRD/TBLWT Program Space Visibility
FIGURE 3-2:
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION
23 bits Using Program Counter 0 Program Counter 0
Select Using Program Space Visibility 0 PSVPAG Reg 8 bits
1
EA
15 bits
EA Using Table Instruction 1/0 TBLPAG Reg 8 bits 16 bits
User/ Configuration Space Select Note:
24-bit EA
Byte Select
Program space visibility cannot be used to access bits <23:16> of a word in program memory.
DS70116C-page 22
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
3.1.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS
A set of table instructions are provided to move byte or word sized data to and from program space. 1. TBLRDL: Table Read Low Word: Read the LS Word of the program address; P<15:0> maps to D<15:0>. Byte: Read one of the LS Bytes of the program address; P<7:0> maps to the destination byte when byte select = 0; P<15:8> maps to the destination byte when byte select = 1. TBLWTL: Table Write Low (refer to Section 6.0 for details on Flash Programming) TBLRDH: Table Read High Word: Read the MS Word of the program address; P<23:16> maps to D<7:0>; D<15:8> will always be = 0. Byte: Read one of the MS Bytes of the program address; P<23:16> maps to the destination byte when byte select = 0; The destination byte will always be = 0 when byte select = 1. TBLWTH: Table Write High (refer to Section 6.0 for details on Flash Programming)
This architecture fetches 24-bit wide program memory. Consequently, instructions are always aligned. However, as the architecture is modified Harvard, data can also be present in program space. There are two methods by which program space can be accessed: via special table instructions, or through the remapping of a 16K word program space page into the upper half of data space (see Section 3.1.2). The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the LS Word of any address within program space, without going through data space. The TBLRDH and TBLWTH instructions are the only method whereby the upper 8 bits of a program space word can be accessed as data. The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the LS Data Word, and TBLRDH and TBLWTH access the space which contains the MS Data Byte. Figure 3-2 shows how the EA is created for table operations and data space accesses (PSV = 1). Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.
2. 3.
4.
FIGURE 3-3:
PROGRAM DATA TABLE ACCESS (LS WORD)
PC Address 0x000000 0x000002 0x000004 0x000006 00000000 00000000 00000000 00000000
23
16
8
0
Program Memory `Phantom' Byte (read as `0')
TBLRDL.W
TBLRDL.B (Wn<0> = 0) TBLRDL.B (Wn<0> = 1)
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 23
DSPIC30F5011/5013
FIGURE 3-4: PROGRAM DATA TABLE ACCESS (MS BYTE)
TBLRDH.W PC Address 0x000000 0x000002 0x000004 0x000006 00000000 00000000 00000000 00000000 TBLRDH.B (Wn<0> = 0) Program Memory `Phantom' Byte (read as `0')
23
16
8
0
TBLRDH.B (Wn<0> = 1)
3.1.2
DATA ACCESS FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY
The upper 32 Kbytes of data space may optionally be mapped into any 16K word program space page. This provides transparent access of stored constant data from X data space without the need to use special instructions (i.e., TBLRDL/H, TBLWTL/H instructions). Program space access through the data space occurs if the MS bit of the data space EA is set and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON). The functions of CORCON are discussed in Section 2.4, DSP Engine. Data accesses to this area add an additional cycle to the instruction being executed, since two program memory fetches are required. Note that the upper half of addressable data space is always part of the X data space. Therefore, when a DSP operation uses program space mapping to access this memory region, Y data space should typically contain state (variable) data for DSP operations, whereas X data space should typically contain coefficient (constant) data. Although each data space address, 0x8000 and higher, maps directly into a corresponding program memory address (see Figure 3-5), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits should be programmed to force an illegal instruction to maintain machine robustness. Refer to the Programmer's Reference Manual (DS70030) for details on instruction encoding.
Note that by incrementing the PC by 2 for each program memory word, the LS 15 bits of data space addresses directly map to the LS 15 bits in the corresponding program space addresses. The remaining bits are provided by the Program Space Visibility Page register, PSVPAG<7:0>, as shown in Figure 3-5. Note: PSV access is temporarily disabled during table reads/writes.
For instructions that use PSV which are executed outside a REPEAT loop: * The following instructions will require one instruction cycle in addition to the specified execution time: - MAC class of instructions with data operand pre-fetch - MOV instructions - MOV.D instructions * All other instructions will require two instruction cycles in addition to the specified execution time of the instruction. For instructions that use PSV which are executed inside a REPEAT loop: * The following instances will require two instruction cycles in addition to the specified execution time of the instruction: - Execution in the first iteration - Execution in the last iteration - Execution prior to exiting the loop due to an interrupt - Execution upon re-entering the loop after an interrupt is serviced * Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.
DS70116C-page 24
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 3-5: DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION
Program Space
Data Space 0x0000 15 PSVPAG(1) 0x21 8
EA<15> = 0
Data 16 Space 15 EA EA<15> = 1
0x8000 15 Address Concatenation 23
23
15
0
0x108000 0x108200
Upper Half of Data Space is Mapped into Program Space 0xFFFF 0x10FFFF
BSET MOV MOV MOV
CORCON,#2 #0x21, W0 W0, PSVPAG 0x8200, W0
; PSV bit set ; Set PSVPAG register ; Access program memory location ; using a data space access
Data Read Note: PSVPAG is an 8-bit register, containing bits <22:15> of the program space address (i.e., it defines the page in program space to which the upper half of data space is being mapped).
3.2
Data Address Space
3.2.1
DATA SPACE MEMORY MAP
The core has two data spaces. The data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths.
The data space memory is split into two blocks, X and Y data space. A key element of this architecture is that Y space is a subset of X space, and is fully contained within X space. In order to provide an apparent linear addressing space, X and Y spaces have contiguous addresses.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 25
DSPIC30F5011/5013
When executing any instruction other than one of the MAC class of instructions, the X block consists of the 64Kbyte data address space (including all Y addresses). When executing one of the MAC class of instructions, the X block consists of the 64-Kbyte data address space excluding the Y address block (for data reads only). In other words, all other instructions regard the entire data memory as one composite address space. The MAC class instructions extract the Y address space from data space and address it using EAs sourced from W10 and W11. The remaining X data space is addressed using W8 and W9. Both address spaces are concurrently accessed only with the MAC class instructions. The data space memory map is shown in Figure 3-6.
FIGURE 3-6:
DATA SPACE MEMORY MAP
MS Byte Address MSB 0x0001 SFR Space 0x07FF 0x0801 X Data RAM (X) 0x0FFF 0x1001 Y Data RAM (Y) 0x17FF 0x1801 0x1FFF 0x17FE 0x1800 0x1FFE 0x07FE 0x0800 0x0FFE 0x1000 8 Kbyte Near Data Space LS Byte Address LSB 0x0000
16 bits
2 Kbyte SFR Space
4 Kbyte SRAM Space
0x8001
0x8000
Optionally Mapped into Program Memory
X Data Unimplemented (X)
0xFFFF
0xFFFE
DS70116C-page 26
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 3-7: DATA SPACE FOR MCU AND DSP (MAC CLASS) INSTRUCTIONS EXAMPLE
UNUSED
X SPACE
(Y SPACE)
Y SPACE
UNUSED
UNUSED
Non-MAC Class Ops (Read/Write) MAC Class Ops (Write) Indirect EA using any W
MAC Class Ops (Read)
Indirect EA using W8, W9
Indirect EA using W10, W11
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 27
X SPACE
X SPACE
SFR SPACE
SFR SPACE
DSPIC30F5011/5013
3.2.2 DATA SPACES 3.2.3 DATA SPACE WIDTH
The X data space is used by all instructions and supports all Addressing modes. There are separate read and write data buses. The X read data bus is the return data path for all instructions that view data space as combined X and Y address space. It is also the X address space data path for the dual operand read instructions (MAC class). The X write data bus is the only write path to data space for all instructions. The X data space also supports modulo addressing for all instructions, subject to Addressing mode restrictions. Bit-reversed addressing is only supported for writes to X data space. The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths. No writes occur across the Y bus. This class of instructions dedicates two W register pointers, W10 and W11, to always address Y data space, independent of X data space, whereas W8 and W9 always address X data space. Note that during accumulator write back, the data address space is considered a combination of X and Y data spaces, so the write occurs across the X bus. Consequently, the write can be to any address in the entire data space. The Y data space can only be used for the data prefetch operation associated with the MAC class of instructions. It also supports modulo addressing for automated circular buffers. Of course, all other instructions can access the Y data address space through the X data path as part of the composite linear space. The boundary between the X and Y data spaces is defined as shown in Figure 3-6 and is not user programmable. Should an EA point to data outside its own assigned address space, or to a location outside physical memory, an all zero word/byte will be returned. For example, although Y address space is visible by all non-MAC instructions using any Addressing mode, an attempt by a MAC instruction to fetch data from that space using W8 or W9 (X space pointers) will return 0x0000. The core data width is 16 bits. All internal registers are organized as 16-bit wide words. Data space memory is organized in byte addressable, 16-bit wide blocks.
3.2.4
DATA ALIGNMENT
To help maintain backward compatibility with PICmicro(R) devices and improve data space memory usage efficiency, the dsPIC30F instruction set supports both word and byte operations. Data is aligned in data memory and registers as words, but all data space EAs resolve to bytes. Data byte reads will read the complete word which contains the byte, using the LS bit of any EA to determine which byte to select. The selected byte is placed onto the LS Byte of the X data path (no byte accesses are possible from the Y data path as the MAC class of instruction can only fetch words). That is, data memory and registers are organized as two parallel byte wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. As a consequence of this byte accessibility, all effective address calculations (including those generated by the DSP operations which are restricted to word sized data) are internally scaled to step through word aligned memory. For example, the core would recognize that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws+1 for byte operations and Ws+2 for word operations. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. Should a misaligned read or write be attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed, whereas if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap will then be executed, allowing the system and/or user to examine the machine state prior to execution of the address fault.
TABLE 3-2:
EFFECT OF INVALID MEMORY ACCESSES
Data Returned 0x0000 0x0000 0x0000
FIGURE 3-8:
15 0001 0003 0005
DATA ALIGNMENT
MS Byte Byte1 Byte3 Byte5 87 LS Byte Byte 0 Byte 2 Byte 4 0 0000 0002 0004
Attempted Operation EA = an unimplemented address W8 or W9 used to access Y data space in a MAC instruction W10 or W11 used to access X data space in a MAC instruction
All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes or 32K words.
DS70116C-page 28
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
All byte loads into any W register are loaded into the LS Byte. The MSB is not modified. A sign-extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address. Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions, including the DSP instructions, operate only on words. There is a Stack Pointer Limit register (SPLIM) associated with the stack pointer. SPLIM is uninitialized at Reset. As is the case for the stack pointer, SPLIM<0> is forced to `0' because all stack operations must be word aligned. Whenever an effective address (EA) is generated using W15 as a source or destination pointer, the address thus generated is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a Stack Error Trap will not occur. The Stack Error Trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a Stack Error Trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value, 0x1FFE. Similarly, a stack pointer underflow (stack error) trap is generated when the stack pointer address is found to be less than 0x0800, thus preventing the stack from interfering with the Special Function Register (SFR) space. A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.
3.2.5
NEAR DATA SPACE
An 8-Kbyte `near' data space is reserved in X address memory space between 0x0000 and 0x1FFF, which is directly addressable via a 13-bit absolute address field within all memory direct instructions. The remaining X address space and all of the Y address space is addressable indirectly. Additionally, the whole of X data space is addressable using MOV instructions, which support memory direct addressing with a 16-bit address field.
FIGURE 3-9: 3.2.6 SOFTWARE STACK
0x0000 15
CALL STACK FRAME
0
The dsPIC devices contain a software stack. W15 is used as the stack pointer. The stack pointer always points to the first available free word and grows from lower addresses towards higher addresses. It pre-decrements for stack pops and post-increments for stack pushes as shown in Figure 3-9. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear. Note: A PC push during exception processing will concatenate the SRL register to the MSB of the PC prior to the push.
Stack Grows Towards Higher Address
PC<15:0> 000000000 PC<22:16>
W15 (before CALL) W15 (after CALL) POP : [--W15] PUSH : [W15++]
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 29
TABLE 3-3:
Bit 14 W0 / WREG W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 SPLIM ACCAL ACCAH Sign-Extension (ACCA<39>) ACCBL ACCBH Sign-Extension (ACCB<39>) PCL -- -- -- -- -- -- -- -- -- RCOUNT DCOUNT DOSTARTL -- -- -- -- -- -- -- DOENDL -- OB SA SB OAB -- -- -- -- SAB -- DA -- DC -- IPL2 IPL1 IPL0 RA DOENDH N OV Z C -- DOSTARTH 0 0 -- -- -- -- -- -- -- -- -- -- -- -- -- PCH TBLPAG PSVPAG ACCBU ACCAU Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuu0 0000 0000 0uuu uuuu uuuu uuuu uuuu uuu0 0000 0000 0uuu uuuu 0000 0000 0000 0000
CORE REGISTER MAP
SFR Name
Address (Home)
Bit 15
W0
0000
W1
0002
DS70116C-page 30
W2
0004
W3
0006
W4
0008
W5
000A
W6
000C
W7
000E
W8
0010
W9
0012
W10
0014
W11
0016
DSPIC30F5011/5013
W12
0018
W13
001A
W14
001C
W15
001E
SPLIM
0020
ACCAL
0022
Preliminary
ACCAH
0024
ACCAU
0026
ACCBL
0028
ACCBH
002A
ACCBU
002C
PCL
002E
PCH
0030
--
TBLPAG
0032
--
PSVPAG
0034
--
RCOUNT
0036
DCOUNT
0038
DOSTARTL
003A
DOSTARTH
003C
--
DOENDL
003E
DOENDH
0040
--
SR
0042
OA
2004 Microchip Technology Inc.
Legend:
u = uninitialized bit
TABLE 3-3:
Bit 14 -- YMODEN -- XS<15:1> 0 1 0 1 XB<14:0> -- DISICNT<13:0> XE<15:1> YS<15:1> YE<15:1> -- BWM<3:0> YWM<3:0> XWM<3:0> -- US EDT DL2 DL1 DL0 SATA SATB SATDW ACCSAT IPL3 PSV RND IF Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
CORE REGISTER MAP (CONTINUED)
SFR Name
Address (Home)
Bit 15
CORCON
0044
--
0000 0000 0010 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuu0 uuuu uuuu uuuu uuu1 uuuu uuuu uuuu uuu0 uuuu uuuu uuuu uuu1 uuuu uuuu uuuu uuuu 0000 0000 0000 0000
MODCON
0046
XMODEN
XMODSRT
0048
XMODEND
004A
YMODSRT
004C
YMODEND
004E
2004 Microchip Technology Inc.
XBREV
0050
BREN
DISICNT
0052
--
Legend:
u = uninitialized bit
Preliminary
DSPIC30F5011/5013
DS70116C-page 31
DSPIC30F5011/5013
NOTES:
DS70116C-page 32
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
4.0 ADDRESS GENERATOR UNITS
4.1 Instruction Addressing Modes
The dsPIC core contains two independent address generator units: the X AGU and Y AGU. The Y AGU supports word sized data reads for the DSP MAC class of instructions only. The dsPIC AGUs support three types of data addressing: * Linear Addressing * Modulo (Circular) Addressing * Bit-Reversed Addressing Linear and Modulo Data Addressing modes can be applied to data space or program space. Bit-reversed addressing is only applicable to data space addresses. The addressing modes in Table 4-1 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.
TABLE 4-1:
FUNDAMENTAL ADDRESSING MODES SUPPORTED
Description The address of the File register is specified explicitly. The contents of a register are accessed directly. The contents of Wn forms the EA. The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value. Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA. The sum of Wn and a literal forms the EA.
Addressing Mode File Register Direct Register Direct Register Indirect Register Indirect Post-modified Register Indirect Pre-modified
Register Indirect with Register Offset The sum of Wn and Wb forms the EA. Register Indirect with Literal Offset
4.1.1
FILE REGISTER INSTRUCTIONS
4.1.2
MCU INSTRUCTIONS
Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register W0, which is denoted as WREG in these instructions. The destination is typically either the same file register, or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space during file register operation.
The three-operand MCU instructions are of the form: Operand 3 = Operand 1 Operand 2 where Operand 1 is always a working register (i.e., the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or an address location. The following addressing modes are supported by MCU instructions: * * * * * Register Direct Register Indirect Register Indirect Post-modified Register Indirect Pre-modified 5-bit or 10-bit Literal Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 33
DSPIC30F5011/5013
4.1.3 MOVE AND ACCUMULATOR INSTRUCTIONS
In summary, the following addressing modes are supported by the MAC class of instructions: * * * * * Register Indirect Register Indirect Post-modified by 2 Register Indirect Post-modified by 4 Register Indirect Post-modified by 6 Register Indirect with Register Offset (Indexed) Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode. Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (register offset) field is shared between both source and destination (but typically only used by one).
4.1.5
OTHER INSTRUCTIONS
In summary, the following addressing modes are supported by move and accumulator instructions: * * * * * * * * Register Direct Register Indirect Register Indirect Post-modified Register Indirect Pre-modified Register Indirect with Register Offset (Indexed) Register Indirect with Literal Offset 8-bit Literal 16-bit Literal Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.
Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.
4.2
Modulo Addressing
Modulo addressing is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms. Modulo addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for modulo addressing since these two registers are used as the stack frame pointer and stack pointer, respectively. In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers) based upon the direction of the buffer. The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a Bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries).
4.1.4
MAC INSTRUCTIONS
The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the data pointers through register indirect tables. The 2 source operand pre-fetch registers must be a member of the set {W8, W9, W10, W11}. For data reads, W8 and W9 will always be directed to the X RAGU and W10 and W11 will always be directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11. Note: Register indirect with register offset addressing is only available for W9 (in X space) and W11 (in Y space).
DS70116C-page 34
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
4.2.1 START AND END ADDRESS 4.2.2
The modulo addressing scheme requires that a starting and an ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 3-3). Note: Y space modulo addressing EA calculations assume word sized data (LS bit of every EA is always clear).
W ADDRESS REGISTER SELECTION
The Modulo and Bit-Reversed Addressing Control register MODCON<15:0> contains enable flags as well as a W register field to specify the W address registers. The XWM and YWM fields select which registers will operate with modulo addressing. If XWM = 15, X RAGU and X WAGU modulo addressing is disabled. Similarly, if YWM = 15, Y AGU modulo addressing is disabled. The X Address Space Pointer W register (XWM), to which modulo addressing is to be applied, is stored in MODCON<3:0> (see Table 3-3). Modulo addressing is enabled for X data space when XWM is set to any value other than `15' and the XMODEN bit is set at MODCON<15>. The Y Address Space Pointer W register (YWM), to which modulo addressing is to be applied, is stored in MODCON<7:4>. Modulo addressing is enabled for Y data space when YWM is set to any value other than `15' and the YMODEN bit is set at MODCON<14>.
The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).
FIGURE 4-1:
Byte Address
MODULO ADDRESSING OPERATION EXAMPLE
MOV MOV MOV MOV MOV MOV MOV MOV #0x1100,W0 W0,XMODSRT #0x1163,W0 W0,MODEND #0x8001,W0 W0,MODCON #0x0000,W0 #0x1110,W1
;set modulo start address ;set modulo end address ;enable W1, X AGU for modulo ;W0 holds buffer fill value ;point W1 to buffer ;fill the 50 buffer locations ;fill the next location ;increment the fill value
0x1100
DO AGAIN,#0x31 MOV W0,[W1++] AGAIN: INC W0,W0 0x1163
Start Addr = 0x1100 End Addr = 0x1163 Length = 0x0032 words
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 35
DSPIC30F5011/5013
4.2.3 MODULO ADDRESSING APPLICABILITY
Modulo addressing can be applied to the effective address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than, or greater than the upper (for incrementing buffers), and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly. Note: The modulo corrected effective address is written back to the register only when PreModify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (e.g., [W7+W2]) is used, modulo address correction is performed but the contents of the register remain unchanged. If the length of a bit-reversed buffer is M = 2N bytes, then the last `N' bits of the data buffer start address must be zeros. XB<14:0> is the bit-reversed address modifier or `pivot point' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size. Note: All bit-reversed EA calculations assume word sized data (LS bit of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.
4.3
Bit-Reversed Addressing
Bit-reversed addressing is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only. The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.
When enabled, bit-reversed addressing will only be executed for register indirect with pre-increment or post-increment addressing and word sized data writes. It will not function for any other addressing mode or for byte sized data, and normal addresses will be generated instead. When bit-reversed addressing is active, the W address pointer will always be added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode will be ignored. In addition, as word sized data is a requirement, the LS bit of the EA is ignored (and always clear). Note: Modulo addressing and bit-reversed addressing should not be enabled together. In the event that the user attempts to do this, bit-reversed addressing will assume priority when active for the X WAGU, and X WAGU modulo addressing will be disabled. However, modulo addressing will continue to function in the X RAGU.
4.3.1
BIT-REVERSED ADDRESSING IMPLEMENTATION
Bit-reversed addressing is enabled when: 1. BWM (W register selection) in the MODCON register is any value other than `15' (the stack cannot be accessed using bit-reversed addressing) and the BREN bit is set in the XBREV register and the addressing mode used is Register Indirect with Pre-Increment or Post-Increment.
If bit-reversed addressing has already been enabled by setting the BREN (XBREV<15>) bit, then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.
2. 3.
FIGURE 4-2:
BIT-REVERSED ADDRESS EXAMPLE
Sequential Address
b15 b14 b13 b12 b11 b10 b9 b8
b7 b6 b5 b4
b3 b2 b1
0 Bit Locations Swapped Left-to-Right Around Center of Binary Value
b15 b14 b13 b12 b11 b10 b9 b8
b7 b6 b5 b1
b2 b3 b4
0
Bit-Reversed Address Pivot Point XB = 0x0008 for a 16-word Bit-Reversed Buffer
DS70116C-page 36
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 4-2: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)
Normal Address A3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 A1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 A0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 A2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Bit-Reversed Address A1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 A0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Decimal 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
TABLE 4-3:
BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER
Buffer Size (Words) 32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 XB<14:0> Bit-Reversed Address Modifier Value 0x4000 0x2000 0x1000 0x0800 0x0400 0x0200 0x0100 0x0080 0x0040 0x0020 0x0010 0x0008 0x0004 0x0002 0x0001
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 37
DSPIC30F5011/5013
NOTES:
DS70116C-page 38
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
5.0 INTERRUPTS
The dsPIC30F Sensor and General Purpose Family has up to 41 interrupt sources and 4 processor exceptions (traps) which must be arbitrated based on a priority scheme. The CPU is responsible for reading the Interrupt Vector Table (IVT) and transferring the address contained in the interrupt vector to the program counter. The interrupt vector is transferred from the program data bus into the program counter via a 24-bit wide multiplexer on the input of the program counter. The Interrupt Vector Table (IVT) and Alternate Interrupt Vector Table (AIVT) are placed near the beginning of program memory (0x000004). The IVT and AIVT are shown in Figure 5-1. The interrupt controller is responsible for preprocessing the interrupts and processor exceptions prior to them being presented to the processor core. The peripheral interrupts and traps are enabled, prioritized and controlled using centralized Special Function Registers: * IFS0<15:0>, IFS1<15:0>, IFS2<15:0> All interrupt request flags are maintained in these three registers. The flags are set by their respective peripherals or external signals, and they are cleared via software. * IEC0<15:0>, IEC1<15:0>, IEC2<15:0> All interrupt enable control bits are maintained in these three registers. These control bits are used to individually enable interrupts from the peripherals or external signals. * IPC0<15:0>... IPC10<7:0> The user assignable priority level associated with each of these 41 interrupts is held centrally in these twelve registers. * IPL<3:0> The current CPU priority level is explicitly stored in the IPL bits. IPL<3> is present in the CORCON register, whereas IPL<2:0> are present in the STATUS register (SR) in the processor core. * INTCON1<15:0>, INTCON2<15:0> Global interrupt control functions are derived from these two registers. INTCON1 contains the control and status flags for the processor exceptions. The INTCON2 register controls the external interrupt request signal behavior and the use of the alternate vector table. Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. All interrupt sources can be user assigned to one of 7 priority levels, 1 through 7, via the IPCx registers. Each interrupt source is associated with an interrupt vector, as shown in Table 5-1. Levels 7 and 1 represent the highest and lowest maskable priorities, respectively. Note: Assigning a priority level of `0' to an interrupt source is equivalent to disabling that interrupt.
If the NSTDIS bit (INTCON1<15>) is set, nesting of interrupts is prevented. Thus, if an interrupt is currently being serviced, processing of a new interrupt is prevented even if the new interrupt is of higher priority than the one currently being serviced. Note: The IPL bits become read only whenever the NSTDIS bit has been set to `1'.
Certain interrupts have specialized control bits for features like edge or level triggered interrupts, interrupton-change, etc. Control of these features remains within the peripheral module which generates the interrupt. The DISI instruction can be used to disable the processing of interrupts of priorities 6 and lower for a certain number of instructions, during which the DISI bit (INTCON2<14>) remains set. When an interrupt is serviced, the PC is loaded with the address stored in the vector location in program memory that corresponds to the interrupt. There are 63 different vectors within the IVT (refer to Table 5-1). These vectors are contained in locations 0x000004 through 0x0000FE of program memory (refer to Table 5-1). These locations contain 24-bit addresses and in order to preserve robustness, an address error trap will take place should the PC attempt to fetch any of these words during normal execution. This prevents execution of random data as a result of accidentally decrementing a PC into vector space, accidentally mapping a data space address into vector space, or the PC rolling over to 0x000000 after reaching the end of implemented program memory space. Execution of a GOTO instruction to this vector space will also generate an address error trap.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 39
DSPIC30F5011/5013
5.1 Interrupt Priority
TABLE 5-1:
INT Number
INTERRUPT VECTOR TABLE
Interrupt Source
The user assignable interrupt priority (IP<2:0>) bits for each individual interrupt source are located in the LS 3 bits of each nibble within the IPCx register(s). Bit 3 of each nibble is not used and is read as a `0'. These bits define the priority level assigned to a particular interrupt by the user. Note: The user selectable priority levels start at 0 as the lowest priority and level 7 as the highest priority.
Vector Number
Highest Natural Order Priority 0 8 INT0 - External Interrupt 0 1 9 IC1 - Input Capture 1 2 10 OC1 - Output Compare 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 T1 - Timer 1 IC2 - Input Capture 2 OC2 - Output Compare 2 T2 - Timer 2 T3 - Timer 3 SPI1 U1RX - UART1 Receiver U1TX - UART1 Transmitter ADC - ADC Convert Done NVM - NVM Write Complete SI2C - I2C Slave Interrupt MI2C - I2C Master Interrupt Input Change Interrupt INT1 - External Interrupt 1 IC7 - Input Capture 7 IC8 - Input Capture 8 OC3 - Output Compare 3 OC4 - Output Compare 4 T4 - Timer 4 T5 - Timer 5 INT2 - External Interrupt 2 U2RX - UART2 Receiver U2TX - UART2 Transmitter SPI2 C1 - Combined IRQ for CAN1 IC3 - Input Capture 3 IC4 - Input Capture 4 IC5 - Input Capture 5 IC6 - Input Capture 6 OC5 - Output Compare 5 OC6 - Output Compare 6 OC7 - Output Compare 7 OC8 - Output Compare 8 INT3 - External Interrupt 3 INT4 - External Interrupt 4
Natural Order Priority is determined by the position of an interrupt in the vector table, and only affects interrupt operation when multiple interrupts with the same user-assigned priority become pending at the same time. Table 5-1 lists the interrupt numbers and interrupt sources for the dsPIC device and their associated vector numbers. Note 1: The natural order priority scheme has 0 as the highest priority and 53 as the lowest priority. 2: The natural order priority number is the same as the INT number. The ability for the user to assign every interrupt to one of seven priority levels implies that the user can assign a very high overall priority level to an interrupt with a low natural order priority. For example, the PLVD (Low Voltage Detect) can be given a priority of 7. The INT0 (External Interrupt 0) may be assigned to priority level 1, thus giving it a very low effective priority.
38 46 C2 - Combined IRQ for CAN2 39-40 47-48 Reserved 41 49 DCI - Codec Transfer Done 42 50 LVD - Low Voltage Detect 43-53 51-61 Reserved Lowest Natural Order Priority
DS70116C-page 40
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
5.2 Reset Sequence 5.3 Traps
A Reset is not a true exception, because the interrupt controller is not involved in the Reset process. The processor initializes its registers in response to a Reset which forces the PC to zero. The processor then begins program execution at location 0x000000. A GOTO instruction is stored in the first program memory location immediately followed by the address target for the GOTO instruction. The processor executes the GOTO to the specified address and then begins operation at the specified target (start) address. Traps can be considered as non-maskable interrupts indicating a software or hardware error, which adhere to a predefined priority as shown in Figure 5-1. They are intended to provide the user a means to correct erroneous operation during debug and when operating within the application. Note: If the user does not intend to take corrective action in the event of a trap error condition, these vectors must be loaded with the address of a default handler that simply contains the RESET instruction. If, on the other hand, one of the vectors containing an invalid address is called, an address error trap is generated.
5.2.1
RESET SOURCES
In addition to external Reset and Power-on Reset (POR), there are 6 sources of error conditions which `trap' to the Reset vector. * Watchdog Time-out: The watchdog has timed out, indicating that the processor is no longer executing the correct flow of code. * Uninitialized W Register Trap: An attempt to use an uninitialized W register as an address pointer will cause a Reset. * Illegal Instruction Trap: Attempted execution of any unused opcodes will result in an illegal instruction trap. Note that a fetch of an illegal instruction does not result in an illegal instruction trap if that instruction is flushed prior to execution due to a flow change. * Brown-out Reset (BOR): A momentary dip in the power supply to the device has been detected which may result in malfunction. * Trap Lockout: Occurrence of multiple trap conditions simultaneously will cause a Reset.
Note that many of these trap conditions can only be detected when they occur. Consequently, the questionable instruction is allowed to complete prior to trap exception processing. If the user chooses to recover from the error, the result of the erroneous action that caused the trap may have to be corrected. There are 8 fixed priority levels for traps: Level 8 through Level 15, which implies that the IPL3 is always set during processing of a trap. If the user is not currently executing a trap, and he sets the IPL<3:0> bits to a value of `0111' (Level 7), then all interrupts are disabled, but traps can still be processed.
5.3.1
TRAP SOURCES
The following traps are provided with increasing priority. However, since all traps can be nested, priority has little effect.
Math Error Trap:
The Math Error trap executes under the following three circumstances: 1. Should an attempt be made to divide by zero, the divide operation will be aborted on a cycle boundary and the trap taken. If enabled, a Math Error trap will be taken when an arithmetic operation on either accumulator A or B causes an overflow from bit 31 and the accumulator guard bits are not utilized. If enabled, a Math Error trap will be taken when an arithmetic operation on either accumulator A or B causes a catastrophic overflow from bit 39 and all saturation is disabled. If the shift amount specified in a shift instruction is greater than the maximum allowed shift amount, a trap will occur.
2.
3.
4.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 41
DSPIC30F5011/5013
Address Error Trap:
This trap is initiated when any of the following circumstances occurs: 1. 2. 3. 4. A misaligned data word access is attempted. A data fetch from our unimplemented data memory location is attempted. A data access of an unimplemented program memory location is attempted. An instruction fetch from vector space is attempted. Note: In the MAC class of instructions, wherein the data space is split into X and Y data space, unimplemented X space includes all of Y space, and unimplemented Y space includes all of X space.
5.3.2
HARD AND SOFT TRAPS
It is possible that multiple traps can become active within the same cycle (e.g., a misaligned word stack write to an overflowed address). In such a case, the fixed priority shown in Figure 5-2 is implemented, which may require the user to check if other traps are pending, in order to completely correct the fault. `Soft' traps include exceptions of priority level 8 through level 11, inclusive. The arithmetic error trap (level 11) falls into this category of traps. `Hard' traps include exceptions of priority level 12 through level 15, inclusive. The address error (level 12), stack error (level 13) and oscillator error (level 14) traps fall into this category. Each hard trap that occurs must be acknowledged before code execution of any type may continue. If a lower priority hard trap occurs while a higher priority trap is pending, acknowledged, or is being processed, a hard trap conflict will occur. The device is automatically Reset in a hard trap conflict condition. The TRAPR status bit (RCON<15>) is set when the Reset occurs, so that the condition may be detected in software.
5.
6.
Execution of a "BRA #literal" instruction or a "GOTO #literal" instruction, where literal is an unimplemented program memory address. Executing instructions after modifying the PC to point to unimplemented program memory addresses. The PC may be modified by loading a value into the stack and executing a RETURN instruction.
Stack Error Trap:
This trap is initiated under the following conditions: 1. The stack pointer is loaded with a value which is greater than the (user programmable) limit value written into the SPLIM register (stack overflow). The stack pointer is loaded with a value which is less than 0x0800 (simple stack underflow).
FIGURE 5-1:
TRAP VECTORS
Reset - GOTO Instruction Reset - GOTO Address Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Vector Reserved Vector Reserved Vector Interrupt 0 Vector Interrupt 1 Vector -- -- -- Interrupt 52 Vector Interrupt 53 Vector Reserved Reserved Reserved Oscillator Fail Trap Vector Stack Error Trap Vector Address Error Trap Vector Math Error Trap Vector Reserved Vector Reserved Vector Reserved Vector Interrupt 0 Vector Interrupt 1 Vector -- -- -- Interrupt 52 Vector Interrupt 53 Vector 0x000000 0x000002 0x000004
2.
Decreasing Priority
IVT
Oscillator Fail Trap:
This trap is initiated if the external oscillator fails and operation becomes reliant on an internal RC backup.
0x000014
0x00007E 0x000080 0x000082 0x000084
AIVT
0x000094
0x0000FE
DS70116C-page 42
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
5.4 Interrupt Sequence 5.5 Alternate Vector Table
All interrupt event flags are sampled in the beginning of each instruction cycle by the IFSx registers. A pending interrupt request (IRQ) is indicated by the flag bit being equal to a `1' in an IFSx register. The IRQ will cause an interrupt to occur if the corresponding bit in the Interrupt Enable (IECx) register is set. For the remainder of the instruction cycle, the priorities of all pending interrupt requests are evaluated. If there is a pending IRQ with a priority level greater than the current processor priority level in the IPL bits, the processor will be interrupted. The processor then stacks the current program counter and the low byte of the processor STATUS register (SRL), as shown in Figure 5-2. The low byte of the STATUS register contains the processor priority level at the time prior to the beginning of the interrupt cycle. The processor then loads the priority level for this interrupt into the STATUS register. This action will disable all lower priority interrupts until the completion of the Interrupt Service Routine. In program memory, the Interrupt Vector Table (IVT) is followed by the Alternate Interrupt Vector Table (AIVT), as shown in Figure 5-1. Access to the alternate vector table is provided by the ALTIVT bit in the INTCON2 register. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors. The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not required, the program memory allocated to the AIVT may be used for other purposes. AIVT is not a protected section and may be freely programmed by the user.
5.6
Fast Context Saving
FIGURE 5-2:
0x0000 15 Stack Grows Towards Higher Address
INTERRUPT STACK FRAME
0
A context saving option is available using shadow registers. Shadow registers are provided for the DC, N, OV, Z and C bits in SR, and the registers W0 through W3. The shadows are only one level deep. The shadow registers are accessible using the PUSH.S and POP.S instructions only. When the processor vectors to an interrupt, the PUSH.S instruction can be used to store the current value of the aforementioned registers into their respective shadow registers.
PC<15:0> SRL IPL3 PC<22:16>
W15 (before CALL) W15 (after CALL) POP : [--W15] PUSH: [W15++]
If an ISR of a certain priority uses the PUSH.S and POP.S instructions for fast context saving, then a higher priority ISR should not include the same instructions. Users must save the key registers in software during a lower priority interrupt if the higher priority ISR uses fast context saving.
5.7
Note 1: The user can always lower the priority level by writing a new value into SR. The Interrupt Service Routine must clear the interrupt flag bits in the IFSx register before lowering the processor interrupt priority, in order to avoid recursive interrupts. 2: The IPL3 bit (CORCON<3>) is always clear when interrupts are being processed. It is set only during execution of traps. The RETFIE (return from interrupt) instruction will unstack the program counter and STATUS registers to return the processor to its state prior to the interrupt sequence.
External Interrupt Requests
The interrupt controller supports up to five external interrupt request signals, INT0-INT4. These inputs are edge sensitive; they require a low-to-high or a high-tolow transition to generate an interrupt request. The INTCON2 register has five bits, INT0EP-INT4EP, that select the polarity of the edge detection circuitry.
5.8
Wake-up from Sleep and Idle
The interrupt controller may be used to wake-up the processor from either Sleep or Idle modes, if Sleep or Idle mode is active when the interrupt is generated. If an enabled interrupt request of sufficient priority is received by the interrupt controller, then the standard interrupt request is presented to the processor. At the same time, the processor will wake-up from Sleep or Idle and begin execution of the Interrupt Service Routine (ISR) needed to process the interrupt request.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 43
TABLE 5-2:
Bit 13 -- -- SI2CIF IC4IF -- SI2CIE IC4IE -- -- -- -- -- -- -- -- -- -- -- -- -- LVDIP<2:0> -- DCIIP<2:0> -- C2IP<2:0> -- INT41IP<2:0> OC7IP<2:0> -- OC6IP<2:0> IC5IP<2:0> -- IC4IP<2:0> SPI2IP<2:0> -- U2TXIP<2:0> -- -- -- -- -- -- T5IP<2:0> -- T4IP<2:0> -- IC8IP<2:0> -- IC7IP<2:0> -- MI2CIP<2:0> -- SI2CIP<2:0> -- U1TXIP<2:0> -- U1RXIP<2:0> -- T2IP<2:0> -- OC2IP<2:0> -- OC1IP<2:0> -- IC1IP<2:0> -- -- -- LVDIE DCIIE -- -- C2IE INT4IE INT3IE OC8IE OC7IE OC6IE INT0IP<2:0> IC2IP<2:0> SPI1IP<2:0> NVMIP<2:0> INT1IP<2:0> OC4IP<2:0> U2RXIP<2:0> IC3IP<2:0> OC5IP<2:0> INT3IP<2:0> -- -- IC3IE C1IE SPI2IE U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE IC8IE IC7IE NVMIE ADIE U1TXIE U1RXIE SPI1IE T3IE T2IE OC2IE IC2IE T1IE OC1IE IC1IE INT0IE INT1IE OC5IE -- -- LVDIF DCIIF -- -- C2IF INT4IF INT3IF OC8IF OC7IF OC6IF OC5IF IC3IF C1IF SPI2IF U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF IC8IF IC7IF INT1IF NVMIF ADIF U1TXIF U1RXIF SPI1IF T3IF T2IF OC2IF IC2IF T1IF OC1IF IC1IF INT0IF -- -- -- -- -- -- -- -- INT4EP INT3EP INT2EP INT1EP -- -- OVATE OVBTE COVTE -- -- -- MATHERR ADDRERR STKERR OSCFAIL -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 0000 0000 0000 0000
INTERRUPT CONTROLLER REGISTER MAP
SFR Name
ADR
Bit 15
Bit 14
INTCON1
0080 NSTDIS
--
DS70116C-page 44
INT0EP 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0000 0100 0100 0100 0000 0100 0100 0000 -- --
INTCON2
0082 ALTIVT
--
IFS0
0084
CNIF
MI2CIF
IFS1
0086
IC6IF
IC5IF
IFS2
0088
--
--
IEC0
008C
CNIE
MI2CIE
IEC1
008E
IC6IE
IC5IE
IEC2
0090
--
--
IPC0
0094
--
T1IP<2:0>
IPC1
0096
--
T31P<2:0>
IPC2
0098
--
ADIP<2:0>
IPC3
009A
--
CNIP<2:0>
DSPIC30F5011/5013
IPC4
009C
--
OC3IP<2:0>
IPC5
009E
--
INT2IP<2:0>
IPC6
00A0
--
C1IP<2:0>
IPC7
00A2
--
IC6IP<2:0>
IPC8
00A4
--
OC8IP<2:0>
Preliminary
IPC9
00A6
--
--
IPC10
00A8
--
--
Legend:
u = uninitialized bit
2004 Microchip Technology Inc.
DSPIC30F5011/5013
6.0 FLASH PROGRAM MEMORY
6.2
The dsPIC30F family of devices contains internal program Flash memory for executing user code. There are two methods by which the user can program this memory: 1. 2. Run-Time Self-Programming (RTSP) In-Circuit Serial ProgrammingTM (ICSPTM)
Run-Time Self-Programming (RTSP)
RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may erase program memory, 32 instructions (96 bytes) at a time and can write program memory data, 32 instructions (96 bytes) at a time.
6.1
In-Circuit Serial Programming (ICSP)
6.3
Table Instruction Operation Summary
dsPIC30F devices can be serially programmed while in the end application circuit. This is simply done with two lines for Programming Clock and Programming Data (which are named PGC and PGD respectively), and three other lines for Power (VDD), Ground (VSS) and Master Clear (MCLR). this allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.
The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in Word or Byte mode. The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can access program memory in Word or Byte mode. A 24-bit program memory address is formed using bits<7:0> of the TBLPAG register and the effective address (EA) from a W register specified in the table instruction, as shown in Figure 6-1.
FIGURE 6-1:
ADDRESSING FOR TABLE AND NVM REGISTERS
24 bits Using Program Counter 0 Program Counter 0
NVMADR Reg EA Using NVMADR Addressing 1/0 NVMADRU Reg 8 bits 16 bits
Working Reg EA Using Table Instruction 1/0 TBLPAG Reg 8 bits 16 bits
User/Configuration Space Select
24-bit EA
Byte Select
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 45
DSPIC30F5011/5013
6.4 RTSP Operation 6.5 Control Registers
The dsPIC30F Flash program memory is organized into rows and panels. Each row consists of 32 instructions, or 96 bytes. Each panel consists of 128 rows, or 4K x 24 instructions. RTSP allows the user to erase one row (32 instructions) at a time and to program four instructions at one time. RTSP may be used to program multiple program memory panels, but the table pointer must be changed at each panel boundary. Each panel of program memory contains write latches that hold 32 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the panel write latches. The data to be programmed into the panel is loaded in sequential order into the write latches; instruction 0, instruction 1, etc. The instruction words loaded must always be from a group of 32 boundary. The basic sequence for RTSP programming is to set up a table pointer, then do a series of TBLWT instructions to load the write latches. Programming is performed by setting the special bits in the NVMCON register. 32 TBLWTL and four TBLWTH instructions are required to load the 32 instructions. If multiple panel programming is required, the table pointer needs to be changed and the next set of multiple write latches written. All of the table write operations are single word writes (2 instruction cycles), because only the table latches are written. A programming cycle is required for programming each row. The Flash Program Memory is readable, writable and erasable during normal operation over the entire VDD range. The four SFRs used to read and write the program Flash memory are: * * * * NVMCON NVMADR NVMADRU NVMKEY
6.5.1
NVMCON REGISTER
The NVMCON register controls which blocks are to be erased, which memory type is to be programmed, and start of the programming cycle.
6.5.2
NVMADR REGISTER
The NVMADR register is used to hold the lower two bytes of the effective address. The NVMADR register captures the EA<15:0> of the last table instruction that has been executed and selects the row to write.
6.5.3
NVMADRU REGISTER
The NVMADRU register is used to hold the upper byte of the effective address. The NVMADRU register captures the EA<23:16> of the last table instruction that has been executed.
6.5.4
NVMKEY REGISTER
NVMKEY is a write-only register that is used for write protection. To start a programming or an erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to Section 6.6 for further details. Note: The user can also directly write to the NVMADR and NVMADRU registers to specify a program memory address for erasing or programming.
DS70116C-page 46
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
6.6 Programming Operations
4. A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. A programming operation is nominally 2 msec in duration and the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished. Write 32 instruction words of data from data RAM "image" into the program Flash write latches. Program 32 instruction words into program Flash. a) Setup NVMCON register for multi-word, program Flash, program, and set WREN bit. b) Write `55' to NVMKEY. c) Write `AA' to NVMKEY. d) Set the WR bit. This will begin program cycle. e) CPU will stall for duration of the program cycle. f) The WR bit is cleared by the hardware when program cycle ends. Repeat steps 1 through 5 as needed to program desired amount of program Flash memory.
5.
6.6.1
PROGRAMMING ALGORITHM FOR PROGRAM FLASH
The user can erase or program one row of program Flash memory at a time. The general process is: 1. Read one row of program Flash (32 instruction words) and store into data RAM as a data "image". Update the data image with the desired new data. Erase program Flash row. a) Setup NVMCON register for multi-word, program Flash, erase, and set WREN bit. b) Write address of row to be erased into NVMADRU/NVMDR. c) Write `55' to NVMKEY. d) Write `AA' to NVMKEY. e) Set the WR bit. This will begin erase cycle. f) CPU will stall for the duration of the erase cycle. g) The WR bit is cleared when erase cycle ends.
2. 3.
6.
6.6.2
ERASING A ROW OF PROGRAM MEMORY
Example 6-1 shows a code sequence that can be used to erase a row (32 instructions) of program memory.
EXAMPLE 6-1:
ERASING A ROW OF PROGRAM MEMORY
write
; Setup NVMCON for erase operation, multi word ; program memory selected, and writes enabled MOV #0x4041,W0 ; ; MOV W0,NVMCON ; Init pointer to row to be ERASED MOV #tblpage(PROG_ADDR),W0 ; ; MOV W0,NVMADRU MOV #tbloffset(PROG_ADDR),W0 ; MOV W0, NVMADR ; DISI #5 ; ; MOV #0x55,W0 ; MOV W0,NVMKEY MOV #0xAA,W1 ; ; MOV W1,NVMKEY BSET NVMCON,#WR ; NOP ; NOP ;
Init NVMCON SFR
Initialize PM Page Boundary SFR Intialize in-page EA[15:0] pointer Initialize NVMADR SFR Block all interrupts with priority <7 for next 5 instructions Write the 0x55 key Write the 0xAA key Start the erase sequence Insert two NOPs after the erase command is asserted
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 47
DSPIC30F5011/5013
6.6.3 LOADING WRITE LATCHES
Example 6-2 shows a sequence of instructions that can be used to load the 96 bytes of write latches. 32 TBLWTL and 32 TBLWTH instructions are needed to load the write latches selected by the table pointer.
EXAMPLE 6-2:
LOADING WRITE LATCHES
; Set up a pointer to the first program memory location to be written ; program memory selected, and writes enabled MOV #0x0000,W0 ; ; Initialize PM Page Boundary SFR MOV W0,TBLPAG MOV #0x6000,W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; 0th_program_word MOV #LOW_WORD_0,W2 ; MOV #HIGH_BYTE_0,W3 ; ; Write PM low word into program latch TBLWTL W2,[W0] ; Write PM high byte into program latch TBLWTH W3,[W0++] ; 1st_program_word MOV #LOW_WORD_1,W2 ; MOV #HIGH_BYTE_1,W3 ; ; Write PM low word into program latch TBLWTL W2,[W0] TBLWTH W3,[W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2,W2 ; MOV #HIGH_BYTE_2,W3 ; ; Write PM low word into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTH W3, [W0++] * * * ; 31st_program_word MOV #LOW_WORD_31,W2 ; MOV #HIGH_BYTE_31,W3 ; ; Write PM low word into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTH W3, [W0++]
Note: In Example 6-2, the contents of the upper byte of W3 has no effect.
6.6.4
INITIATING THE PROGRAMMING SEQUENCE
For protection, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs.
EXAMPLE 6-3:
DISI MOV MOV MOV MOV BSET NOP NOP #5
INITIATING A PROGRAMMING SEQUENCE
; ; ; ; ; ; ; ; ; Block all interrupts with priority <7 for next 5 instructions Write the 0x55 key Write the 0xAA key Start the erase sequence Insert two NOPs after the erase command is asserted
#0x55,W0 W0,NVMKEY #0xAA,W1 W1,NVMKEY NVMCON,#WR
DS70116C-page 48
Preliminary
2004 Microchip Technology Inc.
TABLE 6-1:
Bit 14 WREN -- NVMADR<15:0> -- -- -- -- -- -- -- -- KEY<7:0> -- -- -- -- -- -- NVMADR<23:16> -- -- -- TWRI -- PROGOP<6:0> WRERR Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All RESETS 0000 0000 0000 0000 uuuu uuuu uuuu uuuu 0000 0000 uuuu uuuu 0000 0000 0000 0000
NVM REGISTER MAP
File Name
Addr.
Bit 15
NVMCON
0760
WR
NVMADR
0762
NVMADRU
0764
--
NVMKEY
0766
--
2004 Microchip Technology Inc.
Legend:
u = uninitialized bit
Preliminary
DSPIC30F5011/5013
DS70116C-page 49
DSPIC30F5011/5013
NOTES:
DS70116C-page 50
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
7.0 DATA EEPROM MEMORY
The Data EEPROM Memory is readable and writable during normal operation over the entire VDD range. The data EEPROM memory is directly mapped in the program memory address space. The four SFRs used to read and write the program Flash memory are used to access data EEPROM memory, as well. As described in Section 6.5, these registers are: * * * * NVMCON NVMADR NVMADRU NVMKEY Control bit WR initiates write operations similar to program Flash writes. This bit cannot be cleared, only set, in software. They are cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation. The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The address register NVMADR remains unchanged. Note: Interrupt flag bit NVMIF in the IFS0 register is set when write is complete. It must be cleared in software.
The EEPROM data memory allows read and write of single words and 16-word blocks. When interfacing to data memory, NVMADR in conjunction with the NVMADRU register are used to address the EEPROM location being accessed. TBLRDL and TBLWTL instructions are used to read and write data EEPROM. The dsPIC30F devices have up to 8 Kbytes (4K words) of data EEPROM with an address range from 0x7FF000 to 0x7FFFFE. A word write operation should be preceded by an erase of the corresponding memory location(s). The write typically requires 2 ms to complete but the write time will vary with voltage and temperature. A program or erase operation on the data EEPROM does not stop the instruction flow. The user is responsible for waiting for the appropriate duration of time before initiating another data EEPROM write/erase operation. Attempting to read the data EEPROM while a programming or erase operation is in progress results in unspecified data.
7.1
Reading the Data EEPROM
A TBLRD instruction reads a word at the current program word address. This example uses W0 as a pointer to data EEPROM. The result is placed in register W4 as shown in Example 7-1.
EXAMPLE 7-1:
MOV MOV MOV TBLRDL
DATA EEPROM READ
#LOW_ADDR_WORD,W0 ; Init Pointer #HIGH_ADDR_WORD,W1 W1,TBLPAG [ W0 ], W4 ; read data EEPROM
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 51
DSPIC30F5011/5013
7.2
7.2.1
Erasing Data EEPROM
ERASING A BLOCK OF DATA EEPROM
In order to erase a block of data EEPROM, the NVMADRU and NVMADR registers must initially point to the block of memory to be erased. Configure NVMCON for erasing a block of data EEPROM, and set the ERASE and WREN bits in the NVMCON register. Setting the WR bit initiates the erase as shown in Example 7-2.
EXAMPLE 7-2:
DATA EEPROM BLOCK ERASE
; Select data EEPROM block, ERASE, WREN bits MOV #4045,W0 MOV W0,NVMCON ; Initialize NVMCON SFR ; Start erase cycle by setting WR after writing key sequence DISI #5 ; Block all interrupts with priority <7 for ; next 5 instructions MOV #0x55,W0 ; ; Write the 0x55 key MOV W0,NVMKEY MOV #0xAA,W1 ; ; Write the 0xAA key MOV W1,NVMKEY BSET NVMCON,#WR ; Initiate erase sequence NOP NOP ; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle ; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
7.2.2
ERASING A WORD OF DATA EEPROM
The TBLPAG and NVMADR registers must point to the block. Select erase a block of data Flash, and set the ERASE and WREN bits in the NVMCON register. Setting the WR bit initiates the erase as shown in Example 7-3.
EXAMPLE 7-3:
DATA EEPROM WORD ERASE
; Select data EEPROM word, ERASE, WREN bits MOV #4044,W0 MOV W0,NVMCON ; Start erase cycle by setting WR after writing key sequence DISI #5 ; Block all interrupts with priority <7 for ; next 5 instructions MOV #0x55,W0 ; ; Write the 0x55 key MOV W0,NVMKEY MOV #0xAA,W1 ; MOV W1,NVMKEY ; Write the 0xAA key BSET NVMCON,#WR ; Initiate erase sequence NOP NOP ; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle ; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
DS70116C-page 52
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
7.3 Writing to the Data EEPROM
To write an EEPROM data location, the following sequence must be followed: 1. Erase data EEPROM word. a) Select word, data EEPROM erase, and set WREN bit in NVMCON register. b) Write address of word to be erased into NVMADR. c) Enable NVM interrupt (optional). d) Write `55' to NVMKEY. e) Write `AA' to NVMKEY. f) Set the WR bit. This will begin erase cycle. g) Either poll NVMIF bit or wait for NVMIF interrupt. h) The WR bit is cleared when the erase cycle ends. Write data word into data EEPROM write latches. Program 1 data word into data EEPROM. a) Select word, data EEPROM program, and set WREN bit in NVMCON register. b) Enable NVM write done interrupt (optional). c) Write `55' to NVMKEY. d) Write `AA' to NVMKEY. e) Set the WR bit. This will begin program cycle. f) Either poll NVMIF bit or wait for NVM interrupt. g) The WR bit is cleared when the write cycle ends. The write will not initiate if the above sequence is not exactly followed (write 0x55 to NVMKEY, write 0xAA to NVMCON, then set WR bit) for each word. It is strongly recommended that interrupts be disabled during this code segment. Additionally, the WREN bit in NVMCON must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution. The WREN bit should be kept clear at all times except when updating the EEPROM. The WREN bit is not cleared by hardware. After a write sequence has been initiated, clearing the WREN bit will not affect the current write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction. At the completion of the write cycle, the WR bit is cleared in hardware and the Non-Volatile Memory Write Complete Interrupt Flag bit (NVMIF) is set. The user may either enable this interrupt or poll this bit. NVMIF must be cleared by software.
2. 3.
7.3.1
WRITING A WORD OF DATA EEPROM
Once the user has erased the word to be programmed, then a table write instruction is used to write one write latch, as shown in Example 7-4.
EXAMPLE 7-4:
DATA EEPROM WORD WRITE
; Init pointer
; Point to data memory MOV #LOW_ADDR_WORD,W0 MOV #HIGH_ADDR_WORD,W1 MOV W1,TBLPAG MOV #LOW(WORD),W2 TBLWTL W2,[ W0] ; The NVMADR captures last table access address ; Select data EEPROM for 1 word op MOV #0x4004,W0 MOV W0,NVMCON ; Operate key to allow write operation DISI #5
; Get data ; Write data
; Block all interrupts with priority <7 for ; next 5 instructions
MOV #0x55,W0 ; Write the 0x55 key MOV W0,NVMKEY MOV #0xAA,W1 MOV W1,NVMKEY ; Write the 0xAA key BSET NVMCON,#WR ; Initiate program sequence NOP NOP ; Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle ; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 53
DSPIC30F5011/5013
7.3.2 WRITING A BLOCK OF DATA EEPROM
To write a block of data EEPROM, write to all sixteen latches first, then set the NVMCON register and program the block.
EXAMPLE 7-5:
MOV MOV MOV MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV TBLWTL MOV MOV DISI #5 MOV MOV MOV MOV BSET NOP NOP
DATA EEPROM BLOCK WRITE
#LOW_ADDR_WORD,W0 #HIGH_ADDR_WORD,W1 W1,TBLPAG #data1,W2 W2,[ W0]++ #data2,W2 W2,[ W0]++ #data3,W2 W2,[ W0]++ #data4,W2 W2,[ W0]++ #data5,W2 W2,[ W0]++ #data6,W2 W2,[ W0]++ #data7,W2 W2,[ W0]++ #data8,W2 W2,[ W0]++ #data9,W2 W2,[ W0]++ #data10,W2 W2,[ W0]++ #data11,W2 W2,[ W0]++ #data12,W2 W2,[ W0]++ #data13,W2 W2,[ W0]++ #data14,W2 W2,[ W0]++ #data15,W2 W2,[ W0]++ #data16,W2 W2,[ W0]++ #0x400A,W0 W0,NVMCON ; Init pointer
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Get 1st data write data Get 2nd data write data Get 3rd data write data Get 4th data write data Get 5th data write data Get 6th data write data Get 7th data write data Get 8th data write data Get 9th data write data Get 10th data write data Get 11th data write data Get 12th data write data Get 13th data write data Get 14th data write data Get 15th data write data Get 16th data write data. The NVMADR captures last table access address. Select data EEPROM for multi word op Operate Key to allow program operation Block all interrupts with priority <7 for next 5 instructions
#0x55,W0 W0,NVMKEY #0xAA,W1 W1,NVMKEY NVMCON,#WR
; Write the 0x55 key ; Write the 0xAA key ; Start write cycle
DS70116C-page 54
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
7.4 Write Verify 7.5 Protection Against Spurious Write
Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit. There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared; also, the Power-up Timer prevents EEPROM write. The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 55
DSPIC30F5011/5013
NOTES:
DS70116C-page 56
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
8.0 I/O PORTS
All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin. The format of the registers for PORTA are shown in Table 8-1. The TRISA (Data Direction Control) register controls the direction of the RA<7:0> pins, as well as the INTx pins and the VREF pins. The LATA register supplies data to the outputs and is readable/writable. Reading the PORTA register yields the state of the input pins, while writing the PORTA register modifies the contents of the LATA register. A parallel I/O (PIO) port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pad cell. Figure 8-2 shows how ports are shared with other peripherals and the associated I/O cell (pad) to which they are connected. Table 8-2 through Table 8-9 show the formats of the registers for the shared ports, PORTB through PORTG. Note: The actual bits in use vary between devices.
8.1
Parallel I/O (PIO) Ports
When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read but the output driver for the parallel port bit will be disabled. If a peripheral is enabled but the peripheral is not actively driving a pin, that pin may be driven by a port. All port pins have three registers directly associated with the operation of the port pin. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a `1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch (LATx). Reads from the port (PORTx), read the port pins and writes to the port pins, write the latch (LATx). Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.
FIGURE 8-1:
BLOCK DIAGRAM OF A DEDICATED PORT STRUCTURE
Dedicated Port Module
Read TRIS I/O Cell TRIS Latch Data Bus WR TRIS D CK Data Latch D WR LAT + WR Port CK Q I/O Pad Q
Read LAT
Read Port
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 57
DSPIC30F5011/5013
FIGURE 8-2: BLOCK DIAGRAM OF A SHARED PORT STRUCTURE
Peripheral Module Peripheral Input Data Peripheral Module Enable I/O Cell Peripheral Output Enable Peripheral Output Data 1 Output Enable 0 1 0 Read TRIS I/O Pad Data Bus WR TRIS D CK TRIS Latch D WR LAT + WR Port CK Data Latch Q Q Output Multiplexers
PIO Module
Output Data
Read LAT Read Port
Input Data
8.2
Configuring Analog Port Pins
8.2.1
I/O PORT WRITE/READ TIMING
The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted. When reading the Port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.
One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP.
EXAMPLE 8-1:
MOV MOV NOP btss 0xFF00, W0 W0, TRISB
PORT WRITE/READ EXAMPLE
; ; ; ; Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs additional instruction cylcle ; bit test RB13 and skip if set
PORTB, #13
DS70116C-page 58
Preliminary
2004 Microchip Technology Inc.
TABLE 8-1:
Bit 13 -- -- -- LATA10 LATA9 -- LATA7 LATA6 -- -- -- -- -- -- RA10 RA9 -- RA7 RA6 -- -- -- -- -- -- TRISA10 TRISA9 -- TRISA7 TRISA6 -- -- -- -- -- -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
PORTA REGISTER MAP FOR dsPIC30F5013
SFR Name
Addr.
Bit 15
Bit 14
TRISA RA13 LATA13 LATA12 RA12
02C0
TRISA15 TRISA14 TRISA13 TRISA12
1111 0110 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000
PORTA
02C2
RA15
RA14
LATA
02C4
LATA15
LATA14
Legend:
u = uninitialized bit
Note:
PORTA is not implemented in the DSPIC30F5011 device.
2004 Microchip Technology Inc.
Bit 13 TRISB9 RB9 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 RB8 RB7 RB6 RB5 RB4 RB3 TRISB8 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 RB2 LATB2 RB1 LATB1 RB0 LATB0 RB13 LATB13 LATB12 LATB11 LATB10 RB12 RB11 RB10 Bit 13 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 -- -- -- Bit 2 TRISC2 RC2 LATC2 Bit 1 TRISC1 RC1 LATC1 Bit 0 -- -- -- Reset State RC13 LATC13 Bit 13 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 -- -- -- Bit 6 -- -- -- Bit 5 -- -- -- Bit 4 TRISC4 RC4 LATC4 Bit 3 TRISC3 RC3 LATC3 Bit 2 TRISC2 RC2 LATC2 Bit 1 TRISC1 RC1 LATC1 Bit 0 -- -- -- Reset State RC13 LATC13
TABLE 8-2:
PORTB REGISTER MAP FOR DSPIC30F5011/5013
SFR Name
Addr.
Bit 15
Bit 14
TRISB
02C6 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10
1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000
PORTB
02C8
RB15
RB14
LATB
02CB
LATB15
LATB14
Legend:
u = uninitialized bit
TABLE 8-3:
PORTC REGISTER MAP FOR DSPIC30F5011
SFR Name
Addr.
Bit 15
Bit 14
TRISC
02CC
TRISC15 TRISC14 TRISC13
1110 0000 0000 0110 0000 0000 0000 0000 0000 0000 0000 0000
Preliminary
PORTC
02CE
RC15
RC14
LATC
02D0
LATC15
LATC14
Legend:
u = uninitialized bit
TABLE 8-4:
PORTC REGISTER MAP FOR dsPIC30F5013
SFR Name
Addr.
Bit 15
Bit 14
TRISC
02CC
TRISC15 TRISC14 TRISC13
1110 0000 0001 1110 0000 0000 0000 0000 0000 0000 0000 0000
PORTC
02CE
RC15
RC14
LATC
02D0
LATC15
LATC14
Legend:
u = uninitialized bit
DSPIC30F5011/5013
DS70116C-page 59
TABLE 8-5:
Bit 13 -- -- -- -- LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 -- RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 -- TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
PORTD REGISTER MAP FOR DSPIC30F5011
SFR Name
Addr.
Bit 15
Bit 14
TRISD
02D2
--
--
TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 0000 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000
PORTD
02D4
--
--
DS70116C-page 60
Bit 13 TRISD8 RD8 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 RD7 RD6 RD5 RD4 RD3 RD2 TRISD7 TRISD6 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 1111 1111 1111 RD1 LATD1 RD0 LATD0 0000 0000 0000 0000 0000 0000 0000 0000 RD13 LATD13 LATD12 LATD11 LATD10 LATD9 RD12 RD11 RD10 RD9 Bit 13 -- -- -- -- -- -- -- -- -- LATF6 LATF5 -- -- -- -- -- -- RF6 RF5 RF4 LATF4 -- -- -- -- -- -- TRISF6 TRISF5 TRISF4 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 TRISF3 RF3 LATF3 Bit 2 TRISF2 RF2 LATF2 Bit 1 TRISF1 RF1 LATF1 Bit 0 TRISF0 RF0 LATF0 Reset State 0000 0000 0111 1111 0000 0000 0000 0000 0000 0000 0000 0000 Bit 13 -- -- -- -- -- -- -- LATF8 -- -- -- -- RF8 RF7 LATF7 -- -- -- -- TRISF8 TRISF7 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 TRISF6 RF6 LATF6 Bit 5 TRISF5 RF5 LATF5 Bit 4 TRISF4 RF4 LATF4 Bit 3 TRISF3 RF3 LATF3 Bit 2 TRISF2 RF2 LATF2 Bit 1 TRISF1 RF1 LATF1 Bit 0 TRISF0 RF0 LATF0 Reset State 0000 0001 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000 Bit 13 -- -- -- -- -- -- Bit 12 Bit 11 Bit 10 Bit 9 TRISG9 RG9 LATG9 Bit 8 TRISG8 RG8 LATG8 Bit 7 TRISG7 RG7 LATG7 Bit 6 TRISG6 RG6 LATG6 Bit 5 -- -- -- Bit 4 -- -- -- Bit 3 TRISG3 RG3 LATG3 Bit 2 TRISG2 RG2 LATG2 Bit 1 TRISG1 RG1 LATG1 Bit 0 TRISG0 RG0 LATG0 Reset State 1111 0011 1100 1111 0000 0000 0000 0000 0000 0000 0000 0000 RG13 LATG13 LATG12 RG12
LATD
02D6
--
--
Legend:
u = uninitialized bit
TABLE 8-6:
PORTD REGISTER MAP FOR dsPIC30F5013
SFR Name
Addr.
Bit 15
Bit 14
TRISD
02D2 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9
PORTD
02D4
RD15
RD14
LATD
02D6
LATD15
LATD14
Legend:
u = uninitialized bit
DSPIC30F5011/5013
TABLE 8-7:
PORTF REGISTER MAP FOR DSPIC30F5011
SFR Name
Addr.
Bit 15
Bit 14
TRISF
02DE
--
--
PORTF
02E0
--
--
Preliminary
LATF
02E2
--
--
Legend:
u = uninitialized bit
TABLE 8-8:
PORTF REGISTER MAP FOR dsPIC30F5013
SFR Name
Addr.
Bit 15
Bit 14
TRISF
02DE
--
--
PORTF
02E0
--
--
LATF
02E2
--
--
Legend:
u = uninitialized bit
TABLE 8-9:
PORTG REGISTER MAPFOR DSPIC30F5011/5013
SFR Name
Addr.
Bit 15
Bit 14
TRISG
02E4
TRISG15 TRISG14 TRISG13 TRISG12
PORTG
02E6
RG15
RG14
LATG
02E8
LATG15
LATG14
2004 Microchip Technology Inc.
Legend:
u = uninitialized bit
DSPIC30F5011/5013
8.3 Input Change Notification Module
The input change notification module provides the dsPIC30F devices the ability to generate interrupt requests to the processor, in response to a change of state on selected input pins. This module is capable of detecting input change of states even in Sleep mode, when the clocks are disabled. There are up to 24 external signals (CN0 through CN23) that may be selected (enabled) for generating an interrupt request on a change of state.
TABLE 8-10:
SFR Name CNEN1 CNEN2 CNPU1 CNPU2 Legend: Addr. 00C0 00C2 00C4 00C6
INPUT CHANGE NOTIFICATION REGISTER MAP FOR DSPIC30F5011 (BITS 15-8)
Bit 15 CN15IE -- Bit 14 CN14IE -- Bit 13 CN13IE -- Bit 12 CN12IE -- Bit 11 CN11IE -- Bit 10 CN10IE -- Bit 9 CN9IE -- CN9PUE -- Bit 8 CN8IE -- CN8PUE -- Reset State 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE -- -- -- -- -- --
u = uninitialized bit
TABLE 8-11:
SFR Name CNEN1 CNEN2 CNPU1 CNPU2 Legend: Addr. 00C0 00C2 00C4 00C6
INPUT CHANGE NOTIFICATION REGISTER MAP FOR DSPIC30F5011 (BITS 7-0)
Bit 7 CN7IE -- CN7PUE -- Bit 6 CN6IE -- CN6PUE -- Bit 5 CN5IE -- CN5PUE -- Bit 4 CN4IE -- CN4PUE -- Bit 3 CN3IE -- CN3PUE -- Bit 2 CN2IE CN18IE CN2PUE Bit 1 CN1IE CN17IE CN1PUE Bit 0 CN0IE CN16IE CN0PUE CN16PUE Reset State 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
CN18PUE CN17PUE
u = uninitialized bit
TABLE 8-12:
SFR Name CNEN1 CNEN2 CNPU1 CNPU2 Legend: Addr. 00C0 00C2 00C4 00C6
INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F5013 (BITS 15-8)
Bit 15 CN15IE -- Bit 14 CN14IE -- Bit 13 CN13IE -- Bit 12 CN12IE -- Bit 11 CN11IE -- Bit 10 CN10IE -- Bit 9 CN9IE -- CN9PUE -- Bit 8 CN8IE -- CN8PUE -- Reset State 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE -- -- -- -- -- --
u = uninitialized bit
TABLE 8-13:
SFR Name CNEN1 CNEN2 CNPU1 CNPU2 Legend: Addr. 00C0 00C2 00C4 00C6
INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F5013 (BITS 7-0)
Bit 7 CN7IE CN23IE CN7PUE Bit 6 CN6IE CN22IE CN6PUE Bit 5 CN5IE CN21IE CN5PUE Bit 4 CN4IE CN20IE CN4PUE Bit 3 CN3IE CN19IE CN3PUE Bit 2 CN2IE CN18IE CN2PUE Bit 1 CN1IE CN17IE CN1PUE Bit 0 CN0IE CN16IE CN0PUE CN16PUE Reset State 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE
u = uninitialized bit
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 61
DSPIC30F5011/5013
NOTES:
DS70116C-page 62
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
9.0 TIMER1 MODULE
This section describes the 16-bit General Purpose (GP) Timer1 module and associated Operational modes. Figure 9-1 depicts the simplified block diagram of the 16-bit Timer1 module. The following sections provide a detailed description including setup and control registers, along with associated block diagrams for the Operational modes of the timers. The Timer1 module is a 16-bit timer which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. The 16-bit timer has the following modes: * 16-bit Timer * 16-bit Synchronous Counter * 16-bit Asynchronous Counter Further, the following operational characteristics are supported: * Timer gate operation * Selectable prescaler settings * Timer operation during CPU Idle and Sleep modes * Interrupt on 16-bit Period register match or falling edge of external gate signal These Operating modes are determined by setting the appropriate bit(s) in the 16-bit SFR, T1CON. Figure 9-1 presents a block diagram of the 16-bit timer module. 16-bit Timer Mode: In the 16-bit Timer mode, the timer increments on every instruction cycle up to a match value preloaded into the Period register PR1, then resets to `0' and continues to count. When the CPU goes into the Idle mode, the timer will stop incrementing unless the TSIDL (T1CON<13>) bit = 0. If TSIDL = 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode. 16-bit Synchronous Counter Mode: In the 16-bit Synchronous Counter mode, the timer increments on the rising edge of the applied external clock signal which is synchronized with the internal phase clocks. The timer counts up to a match value preloaded in PR1, then resets to `0' and continues. When the CPU goes into the Idle mode, the timer will stop incrementing unless the respective TSIDL bit = 0. If TSIDL = 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode. 16-bit Asynchronous Counter Mode: In the 16-bit Asynchronous Counter mode, the timer increments on every rising edge of the applied external clock signal. The timer counts up to a match value preloaded in PR1, then resets to `0' and continues. When the timer is configured for the Asynchronous mode of operation and the CPU goes into the Idle mode, the timer will stop incrementing if TSIDL = 1.
FIGURE 9-1:
16-BIT TIMER1 MODULE BLOCK DIAGRAM
PR1 Equal
Comparator x 16
TSYNC 1 Sync
Reset T1IF Event Flag 0 1 TGATE
TMR1 0
Q Q D CK
TGATE
TCS TGATE
SOSCO/ T1CK LPOSCEN SOSCI TCY Gate Sync
TON 1x 01 00
TCKPS<1:0> 2 Prescaler 1, 8, 64, 256
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 63
DSPIC30F5011/5013
9.1 Timer Gate Operation 9.4 Timer Interrupt
The 16-bit timer can be placed in the Gated Time Accumulation mode. This mode allows the internal TCY to increment the respective timer when the gate input signal (T1CK pin) is asserted high. Control bit TGATE (T1CON<6>) must be set to enable this mode. The timer must be enabled (TON = 1) and the timer clock source set to internal (TCS = 0). When the CPU goes into the Idle mode, the timer will stop incrementing unless TSIDL = 0. If TSIDL = 1, the timer will resume the incrementing sequence upon termination of the CPU Idle mode. The 16-bit timer has the ability to generate an interrupt on period match. When the timer count matches the Period register, the T1IF bit is asserted and an interrupt will be generated if enabled. The T1IF bit must be cleared in software. The timer interrupt flag, T1IF, is located in the IFS0 Control register in the interrupt controller. When the Gated Time Accumulation mode is enabled, an interrupt will also be generated on the falling edge of the gate signal (at the end of the accumulation cycle). Enabling an interrupt is accomplished via the respective timer interrupt enable bit, T1IE. The timer interrupt enable bit is located in the IEC0 Control register in the interrupt controller.
9.2
Timer Prescaler
The input clock (FOSC/4 or external clock) to the 16-bit Timer has a prescale option of 1:1, 1:8, 1:64 and 1:256, selected by control bits TCKPS<1:0> (T1CON<5:4>). The prescaler counter is cleared when any of the following occurs: * a write to the TMR1 register * a write to the T1CON register * device Reset, such as POR and BOR However, if the timer is disabled (TON = 0), then the timer prescaler cannot be reset since the prescaler clock is halted. TMR1 is not cleared when T1CON is written. It is cleared by writing to the TMR1 register.
9.5
Real-Time Clock
Timer1, when operating in Real-Time Clock (RTC) mode, provides time of day and event time-stamping capabilities. Key operational features of the RTC are: * * * * Operation from 32 kHz LP oscillator 8-bit prescaler Low power Real-Time Clock interrupts
These operating modes are determined by setting the appropriate bit(s) in the T1CON Control register.
FIGURE 9-2:
9.3
Timer Operation During Sleep Mode
C1
RECOMMENDED COMPONENTS FOR TIMER1 LP OSCILLATOR RTC
During CPU Sleep mode, the timer will operate if: * The timer module is enabled (TON = 1) and * The timer clock source is selected as external (TCS = 1) and * The TSYNC bit (T1CON<2>) is asserted to a logic `0' which defines the external clock source as asynchronous. When all three conditions are true, the timer will continue to count up to the Period register and be reset to 0x0000. When a match between the timer and the Period register occurs, an interrupt can be generated if the respective timer interrupt enable bit is asserted.
C1 = C2 = 18 pF; R = 100K SOSCI 32.768 kHz XTAL dsPIC30FXXXX SOSCO C2 R
DS70116C-page 64
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
9.5.1 RTC OSCILLATOR OPERATION 9.5.2 RTC INTERRUPTS
When the TON = 1, TCS = 1 and TGATE = 0, the timer increments on the rising edge of the 32 kHz LP oscillator output signal, up to the value specified in the Period register and is then reset to `0'. The TSYNC bit must be asserted to a logic `0' (Asynchronous mode) for correct operation. Enabling LPOSCEN (OSCCON<1>) will disable the normal Timer and Counter modes and enable a timer carry-out wake-up event. When the CPU enters Sleep mode, the RTC will continue to operate provided the 32 kHz external crystal oscillator is active and the control bits have not been changed. The TSIDL bit should be cleared to `0' in order for RTC to continue operation in Idle mode. When an interrupt event occurs, the respective interrupt flag, T1IF, is asserted and an interrupt will be generated if enabled. The T1IF bit must be cleared in software. The respective Timer interrupt flag, T1IF, is located in the IFS0 Status register in the interrupt controller. Enabling an interrupt is accomplished via the respective timer interrupt enable bit, T1IE. The timer interrupt enable bit is located in the IEC0 Control register in the interrupt controller.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 65
TABLE 9-1:
Bit 13 Timer1 Register Period Register 1 TSIDL -- -- -- -- -- -- TGATE TCKPS1 TCKPS0 -- TSYNC TCS -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State uuuu uuuu uuuu uuuu 1111 1111 1111 1111 0000 0000 0000 0000
TIMER1 REGISTER MAP
SFR Name
Addr.
Bit 15
Bit 14
TMR1
0100
PR1
0102
DS70116C-page 66
T1CON
0104
TON
--
DSPIC30F5011/5013
Legend:
u = uninitialized bit
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
10.0 TIMER2/3 MODULE
This section describes the 32-bit General Purpose (GP) Timer module (Timer2/3) and associated Operational modes. Figure 10-1 depicts the simplified block diagram of the 32-bit Timer2/3 module. Figure 10-2 and Figure 10-3 show Timer2/3 configured as two independent 16-bit timers, Timer2 and Timer3, respectively. The Timer2/3 module is a 32-bit timer (which can be configured as two 16-bit timers) with selectable Operating modes. These timers are utilized by other peripheral modules, such as: * Input Capture * Output Compare/Simple PWM The following sections provide a detailed description, including setup and control registers, along with associated block diagrams for the Operational modes of the timers. The 32-bit timer has the following modes: * Two independent 16-bit timers (Timer2 and Timer3) with all 16-bit Operating modes (except Asynchronous Counter mode) * Single 32-bit timer operation * Single 32-bit synchronous counter Further, the following operational characteristics are supported: * * * * * ADC event trigger Timer gate operation Selectable prescaler settings Timer operation during Idle and Sleep modes Interrupt on a 32-bit period register match 16-bit Timer Mode: In the 16-bit mode, Timer2 and Timer3 can be configured as two independent 16-bit timers. Each timer can be set up in either 16-bit Timer mode or 16-bit Synchronous Counter mode. See Section 9.0, Timer1 Module for details on these two Operating modes. The only functional difference between Timer2 and Timer3 is that Timer2 provides synchronization of the clock prescaler output. This is useful for high frequency external clock inputs. 32-bit Timer Mode: In the 32-bit Timer mode, the timer increments on every instruction cycle, up to a match value preloaded into the combined 32-bit Period register PR3/PR2, then resets to `0' and continues to count. For synchronous 32-bit reads of the Timer2/Timer3 pair, reading the LS Word (TMR2 register) will cause the MS word to be read and latched into a 16-bit holding register, termed TMR3HLD. For synchronous 32-bit writes, the holding register (TMR3HLD) must first be written to. When followed by a write to the TMR2 register, the contents of TMR3HLD will be transferred and latched into the MSB of the 32-bit timer (TMR3). 32-bit Synchronous Counter Mode: In the 32-bit Synchronous Counter mode, the timer increments on the rising edge of the applied external clock signal which is synchronized with the internal phase clocks. The timer counts up to a match value preloaded in the combined 32-bit period register PR3/PR2, then resets to `0' and continues. When the timer is configured for the Synchronous Counter mode of operation and the CPU goes into the Idle mode, the timer will stop incrementing unless the TSIDL (T2CON<13>) bit = 0. If TSIDL = 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.
These Operating modes are determined by setting the appropriate bit(s) in the 16-bit T2CON and T3CON SFRs. For 32-bit timer/counter operation, Timer2 is the LS Word and Timer3 is the MS Word of the 32-bit timer. Note: For 32-bit timer operation, T3CON control bits are ignored. Only T2CON control bits are used for setup and control. Timer2 clock and gate inputs are utilized for the 32-bit timer module but an interrupt is generated with the Timer3 interrupt flag (T3IF) and the interrupt is enabled with the Timer3 interrupt enable bit (T3IE).
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 67
DSPIC30F5011/5013
FIGURE 10-1: 32-BIT TIMER2/3 BLOCK DIAGRAM
Data Bus<15:0>
TMR3HLD 16 Write TMR2 Read TMR2 16 Reset TMR3 MSB ADC Event Trigger Equal Comparator x 32 TMR2 LSB Sync 16
PR3 T3IF Event Flag 0 1 TGATE (T2CON<6>)
Q Q
PR2
D CK
TGATE (T2CON<6>)
TCS TGATE
T2CK Gate Sync TCY
TON 1x
TCKPS<1:0> 2 Prescaler 1, 8, 64, 256
01 00
Note:
Timer configuration bit T32 (T2CON<3>) must be set to `1' for a 32-bit timer/counter operation. All control bits are respective to the T2CON register.
DS70116C-page 68
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 10-2: 16-BIT TIMER2 BLOCK DIAGRAM
PR2 Equal
Comparator x 16
Reset T2IF Event Flag 0 1 TGATE
TMR2
Sync
Q Q
D CK
TGATE TCS TGATE
T2CK Gate Sync TCY
TON 1x
TCKPS<1:0> 2 Prescaler 1, 8, 64, 256
01 00
FIGURE 10-3:
16-BIT TIMER3 BLOCK DIAGRAM
PR3 ADC Event Trigger Equal Comparator x 16
TMR3 Reset 0 1 TGATE
Q Q D CK
T3IF Event Flag
TGATE TCS TGATE
T3CK
Sync
TON 1x
TCKPS<1:0> 2 Prescaler 1, 8, 64, 256
01 TCY 00
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 69
DSPIC30F5011/5013
10.1 Timer Gate Operation 10.4
The 32-bit timer can be placed in the Gated Time Accumulation mode. This mode allows the internal TCY to increment the respective timer when the gate input signal (T2CK pin) is asserted high. Control bit TGATE (T2CON<6>) must be set to enable this mode. When in this mode, Timer2 is the originating clock source. The TGATE setting is ignored for Timer3. The timer must be enabled (TON = 1) and the timer clock source set to internal (TCS = 0). The falling edge of the external signal terminates the count operation but does not reset the timer. The user must reset the timer in order to start counting from zero.
Timer Operation During Sleep Mode
During CPU Sleep mode, the timer will not operate because the internal clocks are disabled.
10.5
Timer Interrupt
10.2
ADC Event Trigger
The 32-bit timer module can generate an interrupt on period match or on the falling edge of the external gate signal. When the 32-bit timer count matches the respective 32-bit period register, or the falling edge of the external "gate" signal is detected, the T3IF bit (IFS0<7>) is asserted and an interrupt will be generated if enabled. In this mode, the T3IF interrupt flag is used as the source of the interrupt. The T3IF bit must be cleared in software. Enabling an interrupt is accomplished via the respective timer interrupt enable bit, T3IE (IEC0<7>).
When a match occurs between the 32-bit timer (TMR3/ TMR2) and the 32-bit combined period register (PR3/ PR2), a special ADC trigger event signal is generated by Timer3.
10.3
Timer Prescaler
The input clock (FOSC/4 or external clock) to the timer has a prescale option of 1:1, 1:8, 1:64, and 1:256, selected by control bits TCKPS<1:0> (T2CON<5:4> and T3CON<5:4>). For the 32-bit timer operation, the originating clock source is Timer2. The prescaler operation for Timer3 is not applicable in this mode. The prescaler counter is cleared when any of the following occurs: * a write to the TMR2/TMR3 register * a write to the T2CON/T3CON register * device Reset, such as POR and BOR However, if the timer is disabled (TON = 0), then the Timer 2 prescaler cannot be reset since the prescaler clock is halted. TMR2/TMR3 is not cleared when T2CON/T3CON is written.
DS70116C-page 70
Preliminary
2004 Microchip Technology Inc.
TABLE 10-1:
Bit 13 Timer2 Register Timer3 Holding Register (for 32-bit timer operations only) Timer3 Register Period Register 2 Period Register 3 TSIDL TSIDL -- -- -- -- -- -- TGATE TCKPS1 TCKPS0 -- -- TCS -- -- -- -- -- -- -- TGATE TCKPS1 TCKPS0 T32 -- TCS -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
TIMER2/3 REGISTER MAP
uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000
SFR Name Addr.
Bit 15
Bit 14
TMR2
0106
TMR3HLD
0108
TMR3
010A
PR2
010C
PR3
010E
T2CON
0110
TON
--
T3CON
0112
TON
--
2004 Microchip Technology Inc.
Legend:
u = uninitialized bit
Preliminary
DSPIC30F5011/5013
DS70116C-page 71
DSPIC30F5011/5013
NOTES:
DS70116C-page 72
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
11.0 TIMER4/5 MODULE
This section describes the second 32-bit General Purpose (GP) Timer module (Timer4/5) and associated Operational modes. Figure 11-1 depicts the simplified block diagram of the 32-bit Timer4/5 module. Figure 11-2 and Figure 11-3 show Timer4/5 configured as two independent 16-bit timers, Timer4 and Timer5, respectively. The Timer4/5 module is similar in operation to the Timer2/3 module. However, there are some differences which are listed below: * The Timer4/5 module does not support the ADC event trigger feature * Timer4/5 can not be utilized by other peripheral modules, such as input capture and output compare The Operating modes of the Timer4/5 module are determined by setting the appropriate bit(s) in the 16-bit T4CON and T5CON SFRs. For 32-bit timer/counter operation, Timer4 is the LS Word and Timer5 is the MS Word of the 32-bit timer. Note: For 32-bit timer operation, T5CON control bits are ignored. Only T4CON control bits are used for setup and control. Timer4 clock and gate inputs are utilized for the 32-bit timer module but an interrupt is generated with the Timer5 interrupt flag (T5IF) and the interrupt is enabled with the Timer5 interrupt enable bit (T5IE).
FIGURE 11-1:
32-BIT TIMER4/5 BLOCK DIAGRAM
Data Bus<15:0>
TMR5HLD 16 Write TMR4 Read TMR4 16 Reset TMR5 MSB Equal TMR4 LSB Sync 16
Comparator x 32
PR5 0 T5IF Event Flag 1
Q Q
PR4
D CK
TGATE (T4CON<6>)
TGATE (T4CON<6>) TCS TGATE
T4CK Gate Sync TCY
TON 1x
TCKPS<1:0> 2 Prescaler 1, 8, 64, 256
01 00
Note:
Timer configuration bit T32 (T4CON<3>) must be set to `1' for a 32-bit timer/counter operation. All control bits are respective to the T4CON register.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 73
DSPIC30F5011/5013
FIGURE 11-2: 16-BIT TIMER4 BLOCK DIAGRAM
PR4 Equal
Comparator x 16
Reset 0 1 TGATE
TMR4
Sync
T4IF Event Flag
Q Q
D CK
TGATE TCS TGATE
T4CK Gate Sync TCY
TON 1x
TCKPS<1:0> 2 Prescaler 1, 8, 64, 256
01 00
FIGURE 11-3:
16-BIT TIMER5 BLOCK DIAGRAM
PR5 ADC Event Trigger Equal
Comparator x 16
Reset 0 1 TGATE
TMR5
T5IF Event Flag
Q Q
D CK
TGATE TCS TGATE
T5CK
TON Sync 1x
TCKPS<1:0> 2 Prescaler 1, 8, 64, 256
01 TCY 00
Note:
In the DSPIC30F5011 device, there is no T5CK pin. Therefore, in this device the following modes should not be used for Timer5: 1: TCS = 1 (16-bit counter) 2: TCS = 0, TGATE = 1 (gated time accumulation)
DS70116C-page 74
Preliminary
2004 Microchip Technology Inc.
TABLE 11-1:
Bit 13 Timer 4 Register Timer 5 Holding Register (for 32-bit operations only) Timer 5 Register Period Register 4 Period Register 5 -- -- TSIDL -- -- -- -- -- -- TGATE TCKPS1 TCKPS0 -- -- TCS -- TSIDL -- -- -- -- -- -- TGATE TCKPS1 TCKPS0 T45 -- TCS -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
TIMER4/5 REGISTER MAP
uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000
SFR Name
Addr.
Bit 15
Bit 14
TMR4
0114
TMR5HLD
0116
TMR5
0118
PR4
011A
PR5
011C
T4CON
011E
TON
T5CON
0120
TON
2004 Microchip Technology Inc.
Legend:
u = uninitialized
Preliminary
DSPIC30F5011/5013
DS70116C-page 75
DSPIC30F5011/5013
NOTES:
DS70116C-page 76
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
12.0 INPUT CAPTURE MODULE
The key operational features of the input capture module are: * Simple Capture Event mode * Timer2 and Timer3 mode selection * Interrupt on input capture event These Operating modes are determined by setting the appropriate bits in the ICxCON register (where x = 1,2,...,N). The dsPIC devices contain up to 8 capture channels (i.e., the maximum value of N is 8). This section describes the input capture module and associated Operational modes. The features provided by this module are useful in applications requiring frequency (period) and pulse measurement. Figure 12-1 depicts a block diagram of the input capture module. Input capture is useful for such modes as: * Frequency/Period/Pulse Measurements * Additional Sources of External Interrupts
FIGURE 12-1:
INPUT CAPTURE MODE BLOCK DIAGRAM
From GP Timer Module T2_CNT T3_CNT
16
16 ICTMR
ICx pin Prescaler 1, 4, 16 3 Clock Synchronizer ICM<2:0> Mode Select ICBNE, ICOV
1 Edge Detection Logic FIFO R/W Logic
0
ICxBUF
ICI<1:0> ICxCON Interrupt Logic
Data Bus Note:
Set Flag ICxIF
Where `x' is shown, reference is made to the registers or bits associated to the respective input capture channels 1 through N.
12.1
Simple Capture Event Mode
12.1.1
CAPTURE PRESCALER
The simple capture events in the dsPIC30F product family are: * * * * * Capture every falling edge Capture every rising edge Capture every 4th rising edge Capture every 16th rising edge Capture every rising and falling edge
There are four input capture prescaler settings specified by bits ICM<2:0> (ICxCON<2:0>). Whenever the capture channel is turned off, the prescaler counter will be cleared. In addition, any Reset will clear the prescaler counter.
These simple Input Capture modes are configured by setting the appropriate bits ICM<2:0> (ICxCON<2:0>).
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 77
DSPIC30F5011/5013
12.1.2 CAPTURE BUFFER OPERATION
12.2
Each capture channel has an associated FIFO buffer which is four 16-bit words deep. There are two status flags which provide status on the FIFO buffer: * ICBFNE - Input Capture Buffer Not Empty * ICOV - Input Capture Overflow The ICBFNE will be set on the first input capture event and remain set until all capture events have been read from the FIFO. As each word is read from the FIFO, the remaining words are advanced by one position within the buffer. In the event that the FIFO is full with four capture events and a fifth capture event occurs prior to a read of the FIFO, an overflow condition will occur and the ICOV bit will be set to a logic `1'. The fifth capture event is lost and is not stored in the FIFO. No additional events will be captured until all four events have been read from the buffer. If a FIFO read is performed after the last read and no new capture event has been received, the read will yield indeterminate results.
Input Capture Operation During Sleep and Idle Modes
An input capture event will generate a device wake-up or interrupt, if enabled, if the device is in CPU Idle or Sleep mode. Independent of the timer being enabled, the input capture module will wake-up from the CPU Sleep or Idle mode when a capture event occurs if ICM<2:0> = 111 and the interrupt enable bit is asserted. The same wakeup can generate an interrupt if the conditions for processing the interrupt have been satisfied. The wake-up feature is useful as a method of adding extra external pin interrupts.
12.2.1
INPUT CAPTURE IN CPU SLEEP MODE
CPU Sleep mode allows input capture module operation with reduced functionality. In the CPU Sleep mode, the ICI<1:0> bits are not applicable and the input capture module can only function as an external interrupt source. The capture module must be configured for interrupt only on rising edge (ICM<2:0> = 111) in order for the input capture module to be used while the device is in Sleep mode. The prescale settings of 4:1 or 16:1 are not applicable in this mode.
12.1.3
TIMER2 AND TIMER3 SELECTION MODE
The input capture module consists of up to 8 input capture channels. Each channel can select between one of two timers for the time base, Timer2 or Timer3. Selection of the timer resource is accomplished through SFR bit, ICTMR (ICxCON<7>). Timer3 is the default timer resource available for the input capture module.
12.2.2
INPUT CAPTURE IN CPU IDLE MODE
12.1.4
HALL SENSOR MODE
When the input capture module is set for capture on every edge, rising and falling, ICM<2:0> = 001, the following operations are performed by the input capture logic: * The input capture interrupt flag is set on every edge, rising and falling. * The interrupt on Capture mode setting bits, ICI<1:0>, is ignored since every capture generates an interrupt. * A capture overflow condition is not generated in this mode.
CPU Idle mode allows input capture module operation with full functionality. In the CPU Idle mode, the Interrupt mode selected by the ICI<1:0> bits is applicable, as well as the 4:1 and 16:1 capture prescale settings which are defined by control bits ICM<2:0>. This mode requires the selected timer to be enabled. Moreover, the ICSIDL bit must be asserted to a logic `0'. If the input capture module is defined as ICM<2:0> = 111 in CPU Idle mode, the input capture pin will serve only as an external interrupt pin.
12.3
Input Capture Interrupts
The input capture channels have the ability to generate an interrupt based upon the selected number of capture events. The selection number is set by control bits ICI<1:0> (ICxCON<6:5>). Each channel provides an interrupt flag (ICxIF) bit. The respective capture channel interrupt flag is located in the corresponding IFSx Status register. Enabling an interrupt is accomplished via the respective capture channel interrupt enable (ICxIE) bit. The capture interrupt enable bit is located in the corresponding IEC Control register.
DS70116C-page 78
Preliminary
2004 Microchip Technology Inc.
TABLE 12-1:
Bit 13 Input 1 Capture Register ICSIDL Input 2 Capture Register ICSIDL Input 3 Capture Register ICSIDL Input 4 Capture Register ICSIDL Input 5 Capture Register ICSIDL Input 6 Capture Register ICSIDL Input 7 Capture Register ICSIDL Input 8 Capture Register ICSIDL -- -- -- -- -- ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> -- -- -- -- -- ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> -- -- -- -- -- ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> -- -- -- -- -- ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> -- -- -- -- -- ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> -- -- -- -- -- ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> -- -- -- -- -- ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> -- -- -- -- -- ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
INPUT CAPTURE REGISTER MAP
uuuu uuuu uuuu uuuu 0000 0000 0000 0000 uuuu uuuu uuuu uuuu 0000 0000 0000 0000 uuuu uuuu uuuu uuuu 0000 0000 0000 0000 uuuu uuuu uuuu uuuu 0000 0000 0000 0000 uuuu uuuu uuuu uuuu 0000 0000 0000 0000 uuuu uuuu uuuu uuuu 0000 0000 0000 0000 uuuu uuuu uuuu uuuu 0000 0000 0000 0000 uuuu uuuu uuuu uuuu 0000 0000 0000 0000
SFR Name
Addr.
Bit 15
Bit 14
IC1BUF
0140
IC1CON
0142
--
--
IC2BUF
0144
IC2CON
0146
--
--
IC3BUF
0148
IC3CON
014A
--
--
IC4BUF
014C
2004 Microchip Technology Inc.
IC4CON
014E
--
--
IC5BUF
0150
IC5CON
0152
--
--
IC6BUF
0154
IC6CON
0156
--
--
IC7BUF
0158
IC7CON
015A
--
--
IC8BUF
015C
IC8CON
015E
--
--
Preliminary
Legend:
u = uninitialized bit
DSPIC30F5011/5013
DS70116C-page 79
DSPIC30F5011/5013
NOTES:
DS70116C-page 80
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
13.0 OUTPUT COMPARE MODULE
This section describes the output compare module and associated Operational modes. The features provided by this module are useful in applications requiring Operational modes, such as: * Generation of Variable Width Output Pulses * Power Factor Correction Figure 13-1 depicts a block diagram of the output compare module. The key operational features of the output compare module include: * * * * * * Timer2 and Timer3 Selection mode Simple Output Compare Match mode Dual Output Compare Match mode Simple PWM mode Output Compare During Sleep and Idle modes Interrupt on Output Compare/PWM Event These Operating modes are determined by setting the appropriate bits in the 16-bit OCxCON SFR (where x = 1,2,3,...,N). The dsPIC devices contain up to 8 compare channels (i.e., the maximum value of N is 8). OCxRS and OCxR in Figure 13-1 represent the Dual Compare registers. In the Dual Compare mode, the OCxR register is used for the first compare and OCxRS is used for the second compare.
FIGURE 13-1:
OUTPUT COMPARE MODE BLOCK DIAGRAM
Set Flag bit OCxIF
OCxRS
OCxR
Output Logic 3
SQ R Output Enable OCx
Comparator OCTSEL
OCM<2:0> Mode Select OCFA (for x = 1, 2, 3 or 4) or OCFB (for x = 5, 6, 7 or 8)
0
1
0
1
From GP Timer Module TMR2<15:0 TMR3<15:0> T2P2_MATCH T3P3_MATCH
Note:
Where `x' is shown, reference is made to the registers associated with the respective output compare channels 1 through N.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 81
DSPIC30F5011/5013
13.1 Timer2 and Timer3 Selection Mode
13.3.2 CONTINUOUS PULSE MODE
Each output compare channel can select between one of two 16-bit timers, Timer2 or Timer3. The selection of the timers is controlled by the OCTSEL bit (OCxCON<3>). Timer2 is the default timer resource for the output compare module. For the user to configure the module for the generation of a continuous stream of output pulses, the following steps are required: * Determine instruction cycle time TCY. * Calculate desired pulse value based on TCY. * Calculate timer to start pulse width from timer start value of 0x0000. * Write pulse width start and stop times into OCxR and OCxRS (x denotes channel 1, 2, ...,N) Compare registers, respectively. * Set Timer Period register to value equal to, or greater than value in OCxRS Compare register. * Set OCM<2:0> = 101. * Enable timer, TON (TxCON<15>) = 1.
13.2
Simple Output Compare Match Mode
When control bits OCM<2:0> (OCxCON<2:0>) = 001, 010 or 011, the selected output compare channel is configured for one of three simple Output Compare Match modes: * Compare forces I/O pin low * Compare forces I/O pin high * Compare toggles I/O pin The OCxR register is used in these modes. The OCxR register is loaded with a value and is compared to the selected incrementing timer count. When a compare occurs, one of these Compare Match modes occurs. If the counter resets to zero before reaching the value in OCxR, the state of the OCx pin remains unchanged.
13.4
Simple PWM Mode
When control bits OCM<2:0> (OCxCON<2:0>) = 110 or 111, the selected output compare channel is configured for the PWM mode of operation. When configured for the PWM mode of operation, OCxR is the main latch (read only) and OCxRS is the secondary latch. This enables glitchless PWM transitions. The user must perform the following steps in order to configure the output compare module for PWM operation: 1. 2. 3. 4. Set the PWM period by writing to the appropriate period register. Set the PWM duty cycle by writing to the OCxRS register. Configure the output compare module for PWM operation. Set the TMRx prescale value and enable the Timer, TON (TxCON<15>) = 1.
13.3
Dual Output Compare Match Mode
When control bits OCM<2:0> (OCxCON<2:0>) = 100 or 101, the selected output compare channel is configured for one of two Dual Output Compare modes, which are: * Single Output Pulse mode * Continuous Output Pulse mode
13.3.1
SINGLE PULSE MODE
For the user to configure the module for the generation of a single output pulse, the following steps are required (assuming timer is off): * Determine instruction cycle time TCY. * Calculate desired pulse width value based on TCY. * Calculate time to start pulse from timer start value of 0x0000. * Write pulse width start and stop times into OCxR and OCxRS Compare registers (x denotes channel 1, 2, ...,N). * Set Timer Period register to value equal to, or greater than value in OCxRS Compare register. * Set OCM<2:0> = 100. * Enable timer, TON (TxCON<15>) = 1. To initiate another single pulse, issue another write to set OCM<2:0> = 100.
13.4.1
INPUT PIN FAULT PROTECTION FOR PWM
When control bits OCM<2:0> (OCxCON<2:0>) = 111, the selected output compare channel is again configured for the PWM mode of operation with the additional feature of input FAULT protection. While in this mode, if a logic `0' is detected on the OCFA/B pin, the respective PWM output pin is placed in the high impedance input state. The OCFLT bit (OCxCON<4>) indicates whether a FAULT condition has occurred. This state will be maintained until both of the following events have occurred: * The external FAULT condition has been removed. * The PWM mode has been re-enabled by writing to the appropriate control bits.
DS70116C-page 82
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
13.4.2 PWM PERIOD
The PWM period is specified by writing to the PRx register. The PWM period can be calculated using Equation 13-1. When the selected TMRx is equal to its respective period register, PRx, the following four events occur on the next increment cycle: * TMRx is cleared. * The OCx pin is set. - Exception 1: If PWM duty cycle is 0x0000, the OCx pin will remain low. - Exception 2: If duty cycle is greater than PRx, the pin will remain high. * The PWM duty cycle is latched from OCxRS into OCxR. * The corresponding timer interrupt flag is set. See Figure 13-2 for key PWM period comparisons. Timer3 is referred to in Figure 13-2 for clarity.
EQUATION 13-1:
PWM period = [(PRx) + 1] * 4 * TOSC * (TMRx prescale value) PWM frequency is defined as 1 / [PWM period].
FIGURE 13-2:
PWM OUTPUT TIMING
Period
Duty Cycle
TMR3 = PR3 T3IF = 1 (Interrupt Flag) OCxR = OCxRS
TMR3 = PR3 T3IF = 1 (Interrupt Flag) OCxR = OCxRS TMR3 = Duty Cycle (OCxR) TMR3 = Duty Cycle (OCxR)
13.5
Output Compare Operation During CPU Sleep Mode
13.7
Output Compare Interrupts
When the CPU enters Sleep mode, all internal clocks are stopped. Therefore, when the CPU enters the Sleep state, the output compare channel will drive the pin to the active state that was observed prior to entering the CPU Sleep state. For example, if the pin was high when the CPU entered the Sleep state, the pin will remain high. Likewise, if the pin was low when the CPU entered the Sleep state, the pin will remain low. In either case, the output compare module will resume operation when the device wakes up.
The output compare channels have the ability to generate an interrupt on a compare match, for whichever Match mode has been selected. For all modes except the PWM mode, when a compare event occurs, the respective interrupt flag (OCxIF) is asserted and an interrupt will be generated if enabled. The OCxIF bit is located in the corresponding IFS Status register and must be cleared in software. The interrupt is enabled via the respective compare interrupt enable (OCxIE) bit located in the corresponding IEC Control register. For the PWM mode, when an event occurs, the respective timer interrupt flag (T2IF or T3IF) is asserted and an interrupt will be generated if enabled. The IF bit is located in the IFS0 Status register and must be cleared in software. The interrupt is enabled via the respective timer interrupt enable bit (T2IE or T3IE) located in the IEC0 Control register. The output compare interrupt flag is never set during the PWM mode of operation.
13.6
Output Compare Operation During CPU Idle Mode
When the CPU enters the Idle mode, the output compare module can operate with full functionality. The output compare channel will operate during the CPU Idle mode if the OCSIDL bit (OCxCON<13>) is at logic `0' and the selected time base (Timer2 or Timer3) is enabled and the TSIDL bit of the selected timer is set to logic `0'.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 83
TABLE 13-1:
Bit 13 Output Compare 1 Secondary Register Output Compare 1 Main Register OCSIDL Output Compare 2 Secondary Register Output Compare 2 Main Register OCSIDL Output Compare 3 Secondary Register Output Compare 3 Main Register OCSIDL Output Compare 4 Secondary Register Output Compare 4 Main Register OCSIDL Output Compare 5 Secondary Register Output Compare 5 Main Register OCSIDL Output Compare 6 Secondary Register Output Compare 6 Main Register OCSIDL Output Compare 7 Secondary Register Output Compare 7 Main Register OCSIDL Output Compare 8 Secondary Register Output Compare 8 Main Register OCSIDL -- -- -- -- -- -- -- -- OCFLT OCTSEL OCM<2:0> -- -- -- -- -- -- -- -- OCFLT OCTSEL OCM<2:0> -- -- -- -- -- -- -- -- OCFLT OCTSEL OCM<2:0> -- -- -- -- -- -- -- -- OCFLT OCTSEL OCM<2:0> -- -- -- -- -- -- -- -- OCFLT OCTSEL OCM<2:0> -- -- -- -- -- -- -- -- OCFLT OCTSEL OCM<2:0> -- -- -- -- -- -- -- -- OCFLT OCTSE OCM<2:0> -- -- -- -- -- -- -- -- OCFLT OCTSEL OCM<2:0> Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
OUTPUT COMPARE REGISTER MAP
SFR Name
Addr.
Bit 15
Bit 14
OC1RS
0180
OC1R
0182
DS70116C-page 84
OC1CON
0184
--
--
OC2RS
0186
OC2R
0188
OC2CON
018A
--
--
OC3RS
018C
OC3R
018E
OC3CON
0190
--
--
OC4RS
0192
OC4R
0194
OC4CON
0196
--
--
OC5RS
0198
DSPIC30F5011/5013
OC5R
019A
OC5CON
019C
--
--
OC6RS
019E
OC6R
01A0
OC6CON
01A2
--
--
OC7RS
01A4
Preliminary
OC7R
01A6
OC7CON
01A8
--
--
OC8RS
01AA
OC8R
01AC
OC8CON
01AE
--
--
Legend:
u = uninitialized bit
2004 Microchip Technology Inc.
DSPIC30F5011/5013
14.0 SPI MODULE
The Serial Peripheral Interface (SPI) module is a synchronous serial interface. It is useful for communicating with other peripheral devices, such as EEPROMs, shift registers, display drivers and A/D converters, or other microcontrollers. It is compatible with Motorola's SPI and SIOP interfaces. In Slave mode, data is transmitted and received as external clock pulses appear on SCK. Again, the interrupt is generated when the last bit is latched. If SSx control is enabled, then transmission and reception are enabled only when SSx = low. The SDOx output will be disabled in SSx mode with SSx high. The clock provided to the module is (FOSC/4). This clock is then prescaled by the primary (PPRE<1:0>) and the secondary (SPRE<2:0>) prescale factors. The CKE bit determines whether transmit occurs on transition from active clock state to Idle clock state, or vice versa. The CKP bit selects the Idle state (high or low) for the clock.
14.1
Operating Function Description
Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions. The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active low slave select). In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input. A series of eight (8) or sixteen (16) clock pulses shift out bits from the SPIxSR to SDOx pin and simultaneously shift in data from SDIx pin. An interrupt is generated when the transfer is complete and the corresponding interrupt flag bit (SPI1IF or SPI2IF) is set. This interrupt can be disabled through an interrupt enable bit (SPI1IE or SPI2IE). The receive operation is double-buffered. When a complete byte is received, it is transferred from SPIxSR to SPIxBUF. If the receive buffer is full when new data is being transferred from SPIxSR to SPIxBUF, the module will set the SPIROV bit indicating an overflow condition. The transfer of the data from SPIxSR to SPIxBUF will not be completed and the new data will be lost. The module will not respond to SCL transitions while SPIROV is `1', effectively disabling the module until SPIxBUF is read by user software. Transmit writes are also double-buffered. The user writes to SPIxBUF. When the master or slave transfer is completed, the contents of the shift register (SPIxSR) are moved to the receive buffer. If any transmit data has been written to the buffer register, the contents of the transmit buffer are moved to SPIxSR. The received data is thus placed in SPIxBUF and the transmit data in SPIxSR is ready for the next transfer. Note: Both the transmit buffer (SPIxTXB) and the receive buffer (SPIxRXB) are mapped to the same register address, SPIxBUF.
14.1.1
WORD AND BYTE COMMUNICATION
A control bit, MODE16 (SPIxCON<10>), allows the module to communicate in either 16-bit or 8-bit mode. 16-bit operation is identical to 8-bit operation except that the number of bits transmitted is 16 instead of 8. The user software must disable the module prior to changing the MODE16 bit. The SPI module is reset when the MODE16 bit is changed by the user. A basic difference between 8-bit and 16-bit operation is that the data is transmitted out of bit 7 of the SPIxSR for 8-bit operation, and data is transmitted out of bit15 of the SPIxSR for 16-bit operation. In both modes, data is shifted into bit 0 of the SPIxSR.
14.1.2
SDOx DISABLE
A control bit, DISSDO, is provided to the SPIxCON register to allow the SDOx output to be disabled. This will allow the SPI module to be connected in an input only configuration. SDO can also be used for general purpose I/O.
14.2
Framed SPI Support
The module supports a basic framed SPI protocol in Master or Slave mode. The control bit FRMEN enables framed SPI support and causes the SSx pin to perform the frame synchronization pulse (FSYNC) function. The control bit SPIFSD determines whether the SSx pin is an input or an output (i.e., whether the module receives or generates the frame synchronization pulse). The frame pulse is an active high pulse for a single SPI clock cycle. When frame synchronization is enabled, the data transmission starts only on the subsequent transmit edge of the SPI clock.
In Master mode, the clock is generated by prescaling the system clock. Data is transmitted as soon as a value is written to SPIxBUF. The interrupt is generated at the middle of the transfer of the last bit.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 85
DSPIC30F5011/5013
FIGURE 14-1: SPI BLOCK DIAGRAM
Internal Data Bus Read SPIxBUF Receive SPIxSR SDIx bit 0 Write SPIxBUF Transmit
SDOx SS & FSYNC Control
Shift Clock Clock Control Edge Select Secondary Prescaler 1, 2, 4, 6, 8 Primary Prescaler 1, 4, 16, 64
SSx
FCY
SCKx
Enable Master Clock Note: x = 1 or 2.
FIGURE 14-2:
SPI MASTER/SLAVE CONNECTION
SPITM Master SDOx SDIy
SPITM Slave
Serial Input Buffer (SPIxBUF)
Serial Input Buffer (SPIyBUF)
Shift Register (SPIxSR) MSb LSb
SDIx
SDOy
Shift Register (SPIySR) MSb LSb
SCKx PROCESSOR 1
Serial Clock
SCKy PROCESSOR 2
Note: x = 1 or 2, y = 1 or 2.
DS70116C-page 86
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
14.3 Slave Select Synchronization 14.5
The SSx pin allows a Synchronous Slave mode. The SPI must be configured in SPI Slave mode with SSx pin control enabled (SSEN = 1). When the SSx pin is low, transmission and reception are enabled and the SDOx pin is driven. When SSx pin goes high, the SDOx pin is no longer driven. Also, the SPI module is resynchronized, and all counters/control circuitry are reset. Therefore, when the SSx pin is asserted low again, transmission/reception will begin at the MS bit even if SSx had been de-asserted in the middle of a transmit/receive.
SPI Operation During CPU Idle Mode
When the device enters Idle mode, all clock sources remain functional. The SPISIDL bit (SPIxSTAT<13>) selects if the SPI module will stop or continue on Idle. If SPISIDL = 0, the module will continue to operate when the CPU enters Idle mode. If SPISIDL = 1, the module will stop when the CPU enters Idle mode.
14.4
SPI Operation During CPU Sleep Mode
During Sleep mode, the SPI module is shutdown. If the CPU enters Sleep mode while an SPI transaction is in progress, then the transmission and reception is aborted. The transmitter and receiver will stop in Sleep mode. However, register contents are not affected by entering or exiting Sleep mode.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 87
TABLE 14-1:
Bit 13 SPISIDL SPIFSD Transmit and Receive Buffer -- DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 -- -- -- -- -- -- SPIROV -- -- -- -- SPITBF Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
SPI1 REGISTER MAP
SFR Name
Addr.
Bit 15
Bit 14
SPI1STAT
0220
SPIEN
--
SPIRBF 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
SPI1CON
0222
--
FRMEN
DS70116C-page 88
Bit 13 SPISIDL SPIFSD Transmit and Receive Buffer -- DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPRE2 SPRE1 SPRE0 PPRE1 -- -- -- -- -- -- SPIROV -- -- -- -- SPITBF Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SPIRBF PPRE0 Reset State 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
SPI1BUF
0224
Legend:
u = uninitialized bit
TABLE 14-2:
SPI2 REGISTER MAP
SFR Name
Addr.
Bit 15
Bit 14
SPI2STAT
0226
SPIEN
--
SPI2CON
0228
--
FRMEN
SPI2BUF
022A
DSPIC30F5011/5013
Legend:
u = uninitialized bit
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
15.0 I2C MODULE
15.1 Operating Function Description
The Inter-Integrated Circuit (I2CTM) module provides complete hardware support for both Slave and MultiMaster modes of the I2C serial communication standard, with a 16-bit interface. This module offers the following key features: * I2C interface supporting both master and slave operation. * I2C Slave mode supports 7 and 10-bit address. * I2C Master mode supports 7 and 10-bit address. * I2C port allows bidirectional transfers between master and slaves. * Serial clock synchronization for I2C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control). * I2C supports multi-master operation; detects bus collision and will arbitrate accordingly. The hardware fully implements all the master and slave functions of the I2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing. Thus, the I2C module can operate either as a slave or a master on an I2C bus.
15.1.1
* * *
VARIOUS I2C MODES
The following types of I2C operation are supported: I2C slave operation with 7-bit address I2C slave operation with 10-bit address I2C master operation with 7 or 10-bit address
See the I2C programmer's model in Figure 15-1.
FIGURE 15-1:
PROGRAMMER'S MODEL
I2CRCV (8 bits) Bit 7 Bit 7 Bit 8 Bit 15 Bit 15 Bit 9 Bit 0 I2CTRN (8 bits) Bit 0 I2CBRG (9 bits) Bit 0 I2CCON (16 bits) Bit 0 I2CSTAT (16 bits) Bit 0 I2CADD (10 bits) Bit 0 The I2CADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CBRG acts as the baud rate generator reload value. In receive operations, I2CRSR and I2CRCV together form a double-buffered receiver. When I2CRSR receives a complete byte, it is transferred to I2CRCV and an interrupt pulse is generated. During transmission, the I2CTRN is not double-buffered. Note: Following a RESTART condition in 10-bit mode, the user only needs to match the first 7-bit address.
15.1.2
I2C
PIN CONFIGURATION IN I2C MODE
has a 2-pin interface: the SCL pin is clock and the SDA pin is data.
15.1.3
I2C REGISTERS
I2CCON and I2CSTAT are control and status registers, respectively. The I2CCON register is readable and writable. The lower 6 bits of I2CSTAT are read only. The remaining bits of the I2CSTAT are read/write. I2CRSR is the shift register used for shifting data, whereas I2CRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CRCV is the receive buffer as shown in Figure 15-1. I2CTRN is the transmit register to which bytes are written during a transmit operation, as shown in Figure 15-2.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 89
DSPIC30F5011/5013
FIGURE 15-2: I2C BLOCK DIAGRAM
Internal Data Bus
I2CRCV Read SCL Shift Clock I2CRSR LSB SDA Match Detect Addr_Match Write I2CADD Read Start and Stop bit Detect Write Start, RESTART, Stop bit Generate Control Logic I2CSTAT
Read
Collision Detect
Write I2CCON
Acknowledge Generation Clock Stretching I2CTRN Shift Clock Reload Control I2CBRG FCY LSB
Read
Write
Read
Write
BRG Down Counter
Read
DS70116C-page 90
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
15.2 I2C Module Addresses
The I2CADD register contains the Slave mode addresses. The register is a 10-bit register. If the A10M bit (I2CCON<10>) is `0', the address is interpreted by the module as a 7-bit address. When an address is received, it is compared to the 7 LS bits of the I2CADD register. If the A10M bit is `1', the address is assumed to be a 10-bit address. When an address is received, it will be compared with the binary value `11110 A9 A8' (where A9 and A8 are two Most Significant bits of I2CADD). If that value matches, the next address will be compared with the Least Significant 8 bits of I2CADD, as specified in the 10-bit addressing protocol. 7-bit I2C Slave Addresses supported by dsPIC30F: 0x00 0x01-0x03 0x04-0x77 0x78-0x7b 0x7c-0x7f General call address or start byte Reserved Valid 7-bit addresses Valid 10-bit addresses (lower 7 bits) Reserved received, if I2CRCV is not full or I2COV is not set, I2CRSR is transferred to I2CRCV. ACK is sent on the ninth clock. If the RBF flag is set, indicating that I2CRCV is still holding data from a previous operation (RBF = 1), then ACK is not sent; however, the interrupt pulse is generated. In the case of an overflow, the contents of the I2CRSR are not loaded into the I2CRCV. Note: The I2CRCV will be loaded if the I2COV bit = 1 and the RBF flag = 0. In this case, a read of the I2CRCV was performed but the user did not clear the state of the I2COV bit before the next receive occurred. The Acknowledgement is not sent (ACK = 1) and the I2CRCV is updated.
15.4
I2C 10-bit Slave Mode Operation
In 10-bit mode, the basic receive and transmit operations are the same as in the 7-bit mode. However, the criteria for address match is more complex. The I2C specification dictates that a slave must be addressed for a write operation with two address bytes following a Start bit. The A10M bit is a control bit that signifies that the address in I2CADD is a 10-bit address rather than a 7-bit address. The address detection protocol for the first byte of a message address is identical for 7-bit and 10-bit messages, but the bits being compared are different. I2CADD holds the entire 10-bit address. Upon receiving an address following a Start bit, I2CRSR <7:3> is compared against a literal `11110' (the default 10-bit address) and I2CRSR<2:1> are compared against I2CADD<9:8>. If a match occurs and if R_W = 0, the interrupt pulse is sent. The ADD10 bit will be cleared to indicate a partial address match. If a match fails or R_W = 1, the ADD10 bit is cleared and the module returns to the Idle state. The low byte of the address is then received and compared with I2CADD<7:0>. If an address match occurs, the interrupt pulse is generated and the ADD10 bit is set, indicating a complete 10-bit address match. If an address match did not occur, the ADD10 bit is cleared and the module returns to the Idle state.
15.3
I2C 7-bit Slave Mode Operation
Once enabled (I2CEN = 1), the slave module will wait for a Start bit to occur (i.e., the I2C module is `Idle'). Following the detection of a Start bit, 8 bits are shifted into I2CRSR and the address is compared against I2CADD. In 7-bit mode (A10M = 0), bits I2CADD<6:0> are compared against I2CRSR<7:1> and I2CRSR<0> is the R_W bit. All incoming bits are sampled on the rising edge of SCL. If an address match occurs, an Acknowledgement will be sent, and the slave event interrupt flag (SI2CIF) is set on the falling edge of the ninth (ACK) bit. The address match does not affect the contents of the I2CRCV buffer or the RBF bit.
15.3.1
SLAVE TRANSMISSION
If the R_W bit received is a `1', then the serial port will go into Transmit mode. It will send ACK on the ninth bit and then hold SCL to `0' until the CPU responds by writing to I2CTRN. SCL is released by setting the SCLREL bit, and 8 bits of data are shifted out. Data bits are shifted out on the falling edge of SCL, such that SDA is valid during SCL high. The interrupt pulse is sent on the falling edge of the ninth clock pulse, regardless of the status of the ACK received from the master.
15.4.1
10-BIT MODE SLAVE TRANSMISSION
15.3.2
SLAVE RECEPTION
If the R_W bit received is a `0' during an address match, then Receive mode is initiated. Incoming bits are sampled on the rising edge of SCL. After 8 bits are
Once a slave is addressed in this fashion with the full 10-bit address (we will refer to this state as "PRIOR_ADDR_MATCH"), the master can begin sending data bytes for a slave reception operation.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 91
DSPIC30F5011/5013
15.4.2 10-BIT MODE SLAVE RECEPTION
Once addressed, the master can generate a Repeated Start, reset the high byte of the address and set the R_W bit without generating a Stop bit, thus initiating a slave transmit operation. vice the ISR and read the contents of the I2CRCV before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring. Note 1: If the user reads the contents of the I2CRCV, clearing the RBF bit before the falling edge of the ninth clock, the SCLREL bit will not be cleared and clock stretching will not occur. 2: The SCLREL bit can be set in software regardless of the state of the RBF bit. The user should be careful to clear the RBF bit in the ISR before the next receive sequence in order to prevent an overflow condition.
15.5
Automatic Clock Stretch
In the Slave modes, the module can synchronize buffer reads and write to the master device by clock stretching.
15.5.1
TRANSMIT CLOCK STRETCHING
Both 10-bit and 7-bit Transmit modes implement clock stretching by asserting the SCLREL bit after the falling edge of the ninth clock, if the TBF bit is cleared, indicating the buffer is empty. In Slave Transmit modes, clock stretching is always performed irrespective of the STREN bit. Clock synchronization takes place following the ninth clock of the transmit sequence. If the device samples an ACK on the falling edge of the ninth clock and if the TBF bit is still clear, then the SCLREL bit is automatically cleared. The SCLREL being cleared to `0' will assert the SCL line low. The user's ISR must set the SCLREL bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the I2CTRN before the master device can initiate another transmit sequence. Note 1: If the user loads the contents of I2CTRN, setting the TBF bit before the falling edge of the ninth clock, the SCLREL bit will not be cleared and clock stretching will not occur. 2: The SCLREL bit can be set in software, regardless of the state of the TBF bit.
15.5.4
CLOCK STRETCHING DURING 10-BIT ADDRESSING (STREN = 1)
Clock stretching takes place automatically during the addressing sequence. Because this module has a register for the entire address, it is not necessary for the protocol to wait for the address to be updated. After the address phase is complete, clock stretching will occur on each data receive or transmit sequence as was described earlier.
15.6
Software Controlled Clock Stretching (STREN = 1)
15.5.2
RECEIVE CLOCK STRETCHING
The STREN bit in the I2CCON register can be used to enable clock stretching in Slave Receive mode. When the STREN bit is set, the SCL pin will be held low at the end of each data receive sequence.
When the STREN bit is `1', the SCLREL bit may be cleared by software to allow software to control the clock stretching. The logic will synchronize writes to the SCLREL bit with the SCL clock. Clearing the SCLREL bit will not assert the SCL output until the module detects a falling edge on the SCL output and SCL is sampled low. If the SCLREL bit is cleared by the user while the SCL line has been sampled low, the SCL output will be asserted (held low). The SCL output will remain low until the SCLREL bit is set, and all other devices on the I2C bus have de-asserted SCL. This ensures that a write to the SCLREL bit will not violate the minimum high time requirement for SCL. If the STREN bit is `0', a software write to the SCLREL bit will be disregarded and have no effect on the SCLREL bit.
15.5.3
CLOCK STRETCHING DURING 7-BIT ADDRESSING (STREN = 1)
When the STREN bit is set in Slave Receive mode, the SCL line is held low when the buffer register is full. The method for stretching the SCL output is the same for both 7 and 10-bit Addressing modes. Clock stretching takes place following the ninth clock of the receive sequence. On the falling edge of the ninth clock at the end of the ACK sequence, if the RBF bit is set, the SCLREL bit is automatically cleared, forcing the SCL output to be held low. The user's ISR must set the SCLREL bit before reception is allowed to continue. By holding the SCL line low, the user has time to ser-
15.7
I2C
Interrupts
The module generates two interrupt flags, MI2CIF (I2C Master Interrupt Flag) and SI2CIF (I2C Slave Interrupt Flag). The MI2CIF interrupt flag is activated on completion of a master message event. The SI2CIF interrupt flag is activated on detection of a message directed to the slave.
DS70116C-page 92
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
15.8 Slope Control 15.12 I2C Master Operation
The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I2C bus will not be released. In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this case, the data direction bit (R_W) is logic `0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an ACK bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer. In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the data direction bit. In this case, the data direction bit (R_W) is logic `1'. Thus, the first byte transmitted is a 7-bit slave address, followed by a `1' to indicate receive bit. Serial data is received via SDA while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an ACK bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission. The I2C standard requires slope control on the SDA and SCL signals for Fast mode (400 kHz). The control bit, DISSLW, enables the user to disable slew rate control if desired. It is necessary to disable the slew rate control for 1 MHz mode.
15.9
IPMI Support
The control bit, IPMIEN, enables the module to support Intelligent Peripheral Management Interface (IPMI). When this bit is set, the module accepts and acts upon all addresses.
15.10 General Call Address Support
The general call address can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledgement. The general call address is one of eight addresses reserved for specific purposes by the I2C protocol. It consists of all `0's with R_W = 0. The general call address is recognized when the General Call Enable (GCEN) bit is set (I2CCON<15> = 1). Following a Start bit detection, 8 bits are shifted into I2CRSR and the address is compared with I2CADD, and is also compared with the general call address which is fixed in hardware. If a general call address match occurs, the I2CRSR is transferred to the I2CRCV after the eighth clock, the RBF flag is set and on the falling edge of the ninth bit (ACK bit), the master event interrupt flag (MI2CIF) is set. When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the I2CRCV to determine if the address was device specific or a general call address.
15.12.1
I2C MASTER TRANSMISSION
15.11 I2C Master Support
As a master device, six operations are supported: * Assert a Start condition on SDA and SCL. * Assert a RESTART condition on SDA and SCL. * Write to the I2CTRN register initiating transmission of data/address. * Generate a Stop condition on SDA and SCL. * Configure the I2C port to receive data. * Generate an ACK condition at the end of a received byte of data.
Transmission of a data byte, a 7-bit address, or the second half of a 10-bit address is accomplished by simply writing a value to I2CTRN register. The user should only write to I2CTRN when the module is in a WAIT state. This action will set the Buffer Full Flag (TBF) and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. The Transmit Status Flag, TRSTAT (I2CSTAT<14>), indicates that a master transmit is in progress.
15.12.2
I2C MASTER RECEPTION
Master mode reception is enabled by programming the Receive Enable bit, RCEN (I2CCON<11>). The I2C module must be Idle before the RCEN bit is set, otherwise the RCEN bit will be disregarded. The baud rate generator begins counting and on each rollover, the state of the SCL pin ACK and data are shifted into the I2CRSR on the rising edge of each clock.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 93
DSPIC30F5011/5013
15.12.3
2
BAUD RATE GENERATOR
In I C Master mode, the reload value for the BRG is located in the I2CBRG register. When the BRG is loaded with this value, the BRG counts down to `0' and stops until another reload has taken place. If clock arbitration is taking place, for instance, the BRG is reloaded when the SCL pin is sampled high. As per the I2C standard, FSCK may be 100 kHz or 400 kHz. However, the user can specify any baud rate up to 1 MHz. I2CBRG values of `0' or `1' are illegal.
If a Start, RESTART, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted, and the respective control bits in the I2CCON register are cleared to `0'. When the user services the bus collision Interrupt Service Routine, and if the I2C bus is free, the user can resume communication by asserting a Start condition. The master will continue to monitor the SDA and SCL pins, and if a Stop condition occurs, the MI2CIF bit will be set. A write to the I2CTRN will start the transmission of data at the first data bit regardless of where the transmitter left off when bus collision occurred. In a multi-master environment, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I2C bus can be taken when the P bit is set in the I2CSTAT register, or the bus is Idle and the S and P bits are cleared.
EQUATION 15-1:
SERIAL CLOCK RATE
FSCK = FCY / I2CBRG
15.12.4
CLOCK ARBITRATION
Clock arbitration occurs when the master de-asserts the SCL pin (SCL allowed to float high) during any receive, transmit, or RESTART/Stop condition. When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of I2CBRG and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device.
15.13 I2C Module Operation During CPU Sleep and Idle Modes
15.13.1 I2C OPERATION DURING CPU SLEEP MODE
15.12.5
MULTI-MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION
Multi-master operation support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a `1' on SDA by letting SDA float high while another master asserts a `0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a `1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the MI2CIF pulse and reset the master portion of the I2C port to its Idle state. If a transmit was in progress when the bus collision occurred, the transmission is halted, the TBF flag is cleared, the SDA and SCL lines are de-asserted and a value can now be written to I2CTRN. When the user services the I2C master event Interrupt Service Routine, if the I2C bus is free (i.e., the P bit is set), the user can resume communication by asserting a Start condition.
When the device enters Sleep mode, all clock sources to the module are shutdown and stay at logic `0'. If Sleep occurs in the middle of a transmission and the state machine is partially into a transmission as the clocks stop, then the transmission is aborted. Similarly, if Sleep occurs in the middle of a reception, then the reception is aborted.
15.13.2
I2C OPERATION DURING CPU IDLE MODE
For the I2C, the I2CSIDL bit selects if the module will stop on Idle or continue on Idle. If I2CSIDL = 0, the module will continue operation on assertion of the Idle mode. If I2CSIDL = 1, the module will stop on Idle.
DS70116C-page 94
Preliminary
2004 Microchip Technology Inc.
TABLE 15-1:
Bit 13 -- -- -- I2CSIDL SCLREL IPMIEN -- -- -- -- -- Address Register -- -- BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN -- -- -- -- Baud Rate Generator -- -- -- -- -- Transmit Register -- -- -- -- -- Receive Register Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State -- -- -- --
I2C REGISTER MAP
0000 0000 0000 0000 0000 0000 1111 1111 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
SFR Name Addr.
Bit 15
Bit 14
I2CRCV
0200
--
I2CTRN
0202
--
I2CBRG
0204
--
I2CCON
0206
I2CEN
I2CSTAT --
0208
ACKSTAT
TRSTAT
I2CADD
020A
--
2004 Microchip Technology Inc.
Legend:
u = uninitialized bit
Preliminary
DSPIC30F5011/5013
DS70116C-page 95
DSPIC30F5011/5013
NOTES:
DS70116C-page 96
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
16.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) MODULE
* Fully integrated baud rate generator with 16-bit prescaler * Baud rates range from 38 bps to 1.875 Mbps at a 30 MHz instruction rate * 4-word deep transmit data buffer * 4-word deep receive data buffer * Parity, framing and buffer overrun error detection * Support for interrupt only on address detect (9th bit = 1) * Separate transmit and receive interrupts * Loopback mode for diagnostic support
This section describes the Universal Asynchronous Receiver/Transmitter Communications module.
16.1
UART Module Overview
The key features of the UART module are: * Full-duplex, 8 or 9-bit data communication * Even, odd or no parity options (for 8-bit data) * One or two Stop bits
FIGURE 16-1:
UART TRANSMITTER BLOCK DIAGRAM
Internal Data Bus Write Write
Control and Status bits
UTX8
UxTXREG Low Byte
Transmit Control - Control TSR - Control Buffer - Generate Flags - Generate Interrupt
Load TSR UxTXIF UTXBRK Data UxTX `0' (Start) `1' (Stop) Parity Parity Generator 16 Divider 16x Baud Clock from Baud Rate Generator Transmit Shift Register (UxTSR)
Control Signals
Note:
x = 1 or 2.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 97
DSPIC30F5011/5013
FIGURE 16-2: UART RECEIVER BLOCK DIAGRAM
Internal Data Bus 16
Read
Write
Read Read
Write
UxMODE
UxSTA
URX8 UxRXREG Low Byte Receive Buffer Control - Generate Flags - Generate Interrupt - Shift Data Characters
LPBACK From UxTX 1 UxRX 0 * Start bit Detect * Parity Check * Stop bit Detect * Shift Clock Generation * Wake Logic
8-9 Load RSR to Buffer Receive Shift Register (UxRSR) Control Signals PERR FERR
16 Divider
16x Baud Clock from Baud Rate Generator UxRXIF
DS70116C-page 98
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
16.2
16.2.1
Enabling and Setting Up UART
ENABLING THE UART
16.3
16.3.1
Transmitting Data
TRANSMITTING IN 8-BIT DATA MODE
The UART module is enabled by setting the UARTEN bit in the UxMODE register (where x = 1 or 2). Once enabled, the UxTX and UxRX pins are configured as an output and an input respectively, overriding the TRIS and LATCH register bit settings for the corresponding I/O port pins. The UxTX pin is at logic `1' when no transmission is taking place.
The following steps must be performed in order to transmit 8-bit data: 1. Set up the UART: First, the data length, parity and number of Stop bits must be selected. Then, the transmit and receive interrupt enable and priority bits are setup in the UxMODE and UxSTA registers. Also, the appropriate baud rate value must be written to the UxBRG register. Enable the UART by setting the UARTEN bit (UxMODE<15>). Set the UTXEN bit (UxSTA<10>), thereby enabling a transmission. Write the byte to be transmitted to the lower byte of UxTXREG. The value will be transferred to the Transmit Shift register (UxTSR) immediately and the serial bit stream will start shifting out during the next rising edge of the baud clock. Alternatively, the data byte may be written while UTXEN = 0, following which, the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state. A transmit interrupt will be generated, depending on the value of the interrupt control bit UTXISEL (UxSTA<15>).
16.2.2
DISABLING THE UART
2. 3. 4.
The UART module is disabled by clearing the UARTEN bit in the UxMODE register. This is the default state after any Reset. If the UART is disabled, all I/O pins operate as port pins under the control of the latch and TRIS bits of the corresponding port pins. Disabling the UART module resets the buffers to empty states. Any data characters in the buffers are lost and the baud rate counter is reset. All error and status flags associated with the UART module are reset when the module is disabled. The URXDA, OERR, FERR, PERR, UTXEN, UTXBRK and UTXBF bits are cleared, whereas RIDLE and TRMT are set. Other control bits, including ADDEN, URXISEL<1:0>, UTXISEL, as well as the UxMODE and UxBRG registers, are not affected. Clearing the UARTEN bit while the UART is active will abort all pending transmissions and receptions and reset the module as defined above. Re-enabling the UART will restart the UART in the same configuration.
5.
16.3.2
16.2.3
ALTERNATE I/O
TRANSMITTING IN 9-BIT DATA MODE
The alternate I/O function is enabled by setting the ALTIO bit (UxMODE<10>). If ALTIO = 1, the UxATX and UxARX pins (alternate transmit and alternate receive pins, respectively) are used by the UART module instead of the UxTX and UxRX pins. If ALTIO = 0, the UxTX and UxRX pins are used by the UART module.
The sequence of steps involved in the transmission of 9-bit data is similar to 8-bit transmission, except that a 16-bit data word (of which the upper 7 bits are always clear) must be written to the UxTXREG register.
16.3.3
TRANSMIT BUFFER (UXTXB)
16.2.4
SETTING UP DATA, PARITY AND STOP BIT SELECTIONS
Control bits PDSEL<1:0> in the UxMODE register are used to select the data length and parity used in the transmission. The data length may either be 8 bits with even, odd or no parity, or 9 bits with no parity. The STSEL bit determines whether one or two Stop bits will be used during data transmission. The default (power-on) setting of the UART is 8 bits, no parity and 1 Stop bit (typically represented as 8, N, 1).
The transmit buffer is 9 bits wide and 4 characters deep. Including the Transmit Shift register (UxTSR), the user effectively has a 5-deep FIFO (First-In, FirstOut) buffer. The UTXBF status bit (UxSTA<9>) indicates whether the transmit buffer is full. If a user attempts to write to a full buffer, the new data will not be accepted into the FIFO, and no data shift will occur within the buffer. This enables recovery from a buffer overrun condition. The FIFO is reset during any device Reset but is not affected when the device enters or wakes up from a Power Saving mode.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 99
DSPIC30F5011/5013
16.3.4 TRANSMIT INTERRUPT 16.4.2 RECEIVE BUFFER (UXRXB)
The transmit interrupt flag (U1TXIF or U2TXIF) is located in the corresponding interrupt flag register. The transmitter generates an edge to set the UxTXIF bit. The condition for generating the interrupt depends on the UTXISEL control bit: a) If UTXISEL = 0, an interrupt is generated when a word is transferred from the transmit buffer to the Transmit Shift register (UxTSR). This implies that the transmit buffer has at least one empty word. If UTXISEL = 1, an interrupt is generated when a word is transferred from the transmit buffer to the Transmit Shift register (UxTSR) and the transmit buffer is empty. The receive buffer is 4 words deep. Including the Receive Shift register (UxRSR), the user effectively has a 5-word deep FIFO buffer. URXDA (UxSTA<0>) = 1 indicates that the receive buffer has data available. URXDA = 0 implies that the buffer is empty. If a user attempts to read an empty buffer, the old values in the buffer will be read and no data shift will occur within the FIFO. The FIFO is reset during any device Reset. It is not affected when the device enters or wakes up from a Power Saving mode.
b)
16.4.3
RECEIVE INTERRUPT
Switching between the two Interrupt modes during operation is possible and sometimes offers more flexibility.
16.3.5
TRANSMIT BREAK
The receive interrupt flag (U1RXIF or U2RXIF) can be read from the corresponding interrupt flag register. The interrupt flag is set by an edge generated by the receiver. The condition for setting the receive interrupt flag depends on the settings specified by the URXISEL<1:0> (UxSTA<7:6>) control bits. a) If URXISEL<1:0> = 00 or 01, an interrupt is generated every time a data word is transferred from the Receive Shift register (UxRSR) to the receive buffer. There may be one or more characters in the receive buffer. If URXISEL<1:0> = 10, an interrupt is generated when a word is transferred from the Receive Shift register (UxRSR) to the receive buffer, which as a result of the transfer, contains 3 characters. If URXISEL<1:0> = 11, an interrupt is set when a word is transferred from the Receive Shift register (UxRSR) to the receive buffer, which as a result of the transfer, contains 4 characters (i.e., becomes full).
Setting the UTXBRK bit (UxSTA<11>) will cause the UxTX line to be driven to logic `0'. The UTXBRK bit overrides all transmission activity. Therefore, the user should generally wait for the transmitter to be Idle before setting UTXBRK. To send a break character, the UTXBRK bit must be set by software and must remain set for a minimum of 13 baud clock cycles. The UTXBRK bit is then cleared by software to generate Stop bits. The user must wait for a duration of at least one or two baud clock cycles in order to ensure a valid Stop bit(s) before reloading the UxTXB, or starting other transmitter activity. Transmission of a break character does not generate a transmit interrupt.
b)
c)
16.4
16.4.1
Receiving Data
RECEIVING IN 8-BIT OR 9-BIT DATA MODE
Switching between the Interrupt modes during operation is possible, though generally not advisable during normal operation.
16.5
16.5.1
Reception Error Handling
RECEIVE BUFFER OVERRUN ERROR (OERR BIT)
The following steps must be performed while receiving 8-bit or 9-bit data: 1. 2. 3. Set up the UART (see Section 16.3.1). Enable the UART (see Section 16.3.1). A receive interrupt will be generated when one or more data words have been received, depending on the receive interrupt settings specified by the URXISEL bits (UxSTA<7:6>). Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software. Read the received data from UxRXREG. The act of reading UxRXREG will move the next word to the top of the receive FIFO, and the PERR and FERR values will be updated.
The OERR bit (UxSTA<1>) is set if all of the following conditions occur: a) b) c) The receive buffer is full. The Receive Shift register is full, but unable to transfer the character to the receive buffer. The Stop bit of the character in the UxRSR is detected, indicating that the UxRSR needs to transfer the character to the buffer.
4.
5.
Once OERR is set, no further data is shifted in UxRSR (until the OERR bit is cleared in software or a Reset occurs). The data held in UxRSR and UxRXREG remains valid.
DS70116C-page 100
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
16.5.2 FRAMING ERROR (FERR)
16.6
Address Detect Mode
The FERR bit (UxSTA<2>) is set if a `0' is detected instead of a Stop bit. If two Stop bits are selected, both Stop bits must be `1', otherwise FERR will be set. The read only FERR bit is buffered along with the received data. It is cleared on any Reset.
16.5.3
PARITY ERROR (PERR)
The PERR bit (UxSTA<3>) is set if the parity of the received word is incorrect. This error bit is applicable only if a Parity mode (odd or even) is selected. The read only PERR bit is buffered along with the received data bytes. It is cleared on any Reset.
Setting the ADDEN bit (UxSTA<5>) enables this special mode in which a 9th bit (URX8) value of `1' identifies the received word as an address, rather than data. This mode is only applicable for 9-bit data communication. The URXISEL control bit does not have any impact on interrupt generation in this mode since an interrupt (if enabled) will be generated every time the received word has the 9th bit set.
16.7
Loopback Mode
16.5.4
IDLE STATUS
When the receiver is active (i.e., between the initial detection of the Start bit and the completion of the Stop bit), the RIDLE bit (UxSTA<4>) is `0'. Between the completion of the Stop bit and detection of the next Start bit, the RIDLE bit is `1', indicating that the UART is Idle.
Setting the LPBACK bit enables this special mode in which the UxTX pin is internally connected to the UxRX pin. When configured for the Loopback mode, the UxRX pin is disconnected from the internal UART receive logic. However, the UxTX pin still functions as in a normal operation. To select this mode: a) b) c) Configure UART for desired mode of operation. Set LPBACK = 1 to enable Loopback mode. Enable transmission as defined in Section 16.3.
16.5.5
RECEIVE BREAK
The receiver will count and expect a certain number of bit times based on the values programmed in the PDSEL (UxMODE<2:1>) and STSEL (UxMODE<0>) bits. If the break is longer than 13 bit times, the reception is considered complete after the number of bit times specified by PDSEL and STSEL. The URXDA bit is set, FERR is set, zeros are loaded into the receive FIFO, interrupts are generated if appropriate and the RIDLE bit is set. When the module receives a long break signal and the receiver has detected the Start bit, the data bits and the invalid Stop bit (which sets the FERR), the receiver must wait for a valid Stop bit before looking for the next Start bit. It cannot assume that the break condition on the line is the next Start bit. Break is regarded as a character containing all `0's with the FERR bit set. The break character is loaded into the buffer. No further reception can occur until a Stop bit is received. Note that RIDLE goes high when the Stop bit has not yet been received.
16.8
Baud Rate Generator
The UART has a 16-bit baud rate generator to allow maximum flexibility in baud rate generation. The baud rate generator register (UxBRG) is readable and writable. The baud rate is computed as follows: BRG = 16-bit value held in UxBRG register (0 through 65535) FCY = Instruction Clock Rate (1/TCY) The Baud Rate is given by Equation 16-1.
EQUATION 16-1:
BAUD RATE
Baud Rate = FCY / (16*(BRG+1)) Therefore, the maximum baud rate possible is FCY /16 (if BRG = 0), and the minimum baud rate possible is FCY / (16* 65536). With a full 16-bit baud rate generator at 30 MIPs operation, the minimum baud rate achievable is 28.5 bps.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 101
DSPIC30F5011/5013
16.9 Auto Baud Support
16.10.2
To allow the system to determine baud rates of received characters, the input can be optionally linked to a selected capture input. To enable this mode, the user must program the input capture module to detect the falling and rising edges of the Start bit.
UART OPERATION DURING CPU IDLE MODE
For the UART, the USIDL bit selects if the module will stop operation when the device enters Idle mode or whether the module will continue on Idle. If USIDL = 0, the module will continue operation during Idle mode. If USIDL = 1, the module will stop on Idle.
16.10 UART Operation During CPU Sleep and Idle Modes
16.10.1 UART OPERATION DURING CPU SLEEP MODE
When the device enters Sleep mode, all clock sources to the module are shutdown and stay at logic `0'. If entry into Sleep mode occurs while a transmission is in progress, then the transmission is aborted. The UxTX pin is driven to logic `1'. Similarly, if entry into Sleep mode occurs while a reception is in progress, then the reception is aborted. The UxSTA, UxMODE, transmit and receive registers and buffers, and the UxBRG register are not affected by Sleep mode. If the WAKE bit (UxSTA<7>) is set before the device enters Sleep mode, then a falling edge on the UxRX pin will generate a receive interrupt. The Receive Interrupt Select mode bit (URXISEL) has no effect for this function. If the receive interrupt is enabled, then this will wake-up the device from Sleep. The UARTEN bit must be set in order to generate a wake-up interrupt.
DS70116C-page 102
Preliminary
2004 Microchip Technology Inc.
TABLE 16-1:
Bit 13 USIDL -- -- -- Baud Rate Generator Prescaler -- -- -- -- URX8 Receive Register -- -- -- -- UTX8 Transmit Register -- UTXBRK UTXEN UTXBF TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR FERR OERR -- -- ALTIO -- -- WAKE LPBACK ABAUD -- -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
UART1 REGISTER MAP
PDSEL1 PDSEL0 STSEL 0000 0000 0000 0000 URXDA 0000 0001 0001 0000 0000 000u uuuu uuuu 0000 0000 0000 0000 0000 0000 0000 0000
SFR Name Addr.
Bit 15
Bit 14
U1MODE
020C
UARTEN
--
U1STA
020E
UTXISEL
--
U1TXREG
0210
--
--
U1RXREG
0212
--
--
U1BRG
0214
2004 Microchip Technology Inc.
Bit 13 USIDL -- -- -- Baud Rate Generator Prescaler -- -- -- -- URX8 Receive Register -- -- -- -- UTX8 Transmit Register -- UTXBRK UTXEN UTXBF TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR -- -- -- -- -- WAKE LPBACK ABAUD -- -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State PDSEL1 PDSEL0 FERR OERR
Legend:
u = uninitialized bit
TABLE 16-2:
UART2 REGISTER MAP
SFR Name
Addr.
Bit 15
Bit 14
U2MODE
0216
UARTEN
--
STSEL 0000 0000 0000 0000 URXDA 0000 0001 0001 0000 0000 000u uuuu uuuu 0000 0000 0000 0000 0000 0000 0000 0000
U2STA
0218
UTXISEL
--
U2TXREG
021A
--
--
U2RXREG
021C
--
--
U2BRG
021E
Preliminary
Legend:
u = uninitialized bit
DSPIC30F5011/5013
DS70116C-page 103
DSPIC30F5011/5013
NOTES:
DS70116C-page 104
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
17.0
17.1
CAN MODULE
Overview
The Controller Area Network (CAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments. The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive, and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details. The module features are as follows: * Implementation of the CAN protocol CAN 1.2, CAN 2.0A and CAN 2.0B * Standard and extended data frames * 0-8 bytes data length * Programmable bit rate up to 1 Mbit/sec * Support for remote frames * Double-buffered receiver with two prioritized received message storage buffers (each buffer may contain up to 8 bytes of data) * 6 full (standard/extended identifier) acceptance filters, 2 associated with the high priority receive buffer and 4 associated with the low priority receive buffer * 2 full acceptance filter masks, one each associated with the high and low priority receive buffers * Three transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data) * Programmable wake-up functionality with integrated low-pass filter * Programmable Loopback mode supports self-test operation * Signaling via interrupt capabilities for all CAN receiver and transmitter error states * Programmable clock source * Programmable link to timer module for time-stamping and network synchronization * Low power Sleep and Idle mode
The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.
17.2
Frame Types
The CAN module transmits various types of frames which include data messages or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported: * Standard Data Frame: A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit standard identifier (SID) but not an 18-bit extended identifier (EID). * Extended Data Frame: An extended data frame is similar to a standard data frame but includes an extended identifier as well. * Remote Frame: It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request. * Error Frame: An error frame is generated by any node that detects a bus error. An error frame consists of 2 fields: an error flag field and an error delimiter field. * Overload Frame: An overload frame can be generated by a node as a result of 2 conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message. * Interframe Space: Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 105
DSPIC30F5011/5013
FIGURE 17-1: CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM
Acceptance Mask RXM1 Acceptance Filter RXF2 TXB0 MESSAGE MSGREQ TXABT TXLARB TXERR MTXBUFF TXB1 MESSAGE MSGREQ TXABT TXLARB TXERR MTXBUFF TXB2 A c c e p t MESSAGE MSGREQ TXABT TXLARB TXERR MTXBUFF Acceptance Mask RXM0 Acceptance Filter RXF0 Acceptance Filter RXF1 Acceptance Filter RXF3 Acceptance Filter RXF4 Acceptance Filter RXF5 A c c e p t
BUFFERS
Message Queue Control
R X B 0 Transmit Byte Sequencer
Identifier
M A B
Identifier
R X B 1
Data Field
Data Field
PROTOCOL ENGINE
Receive Error Counter
RERRCNT TERRCNT Err Pas Bus Off
Transmit Error Counter Transmit Shift Receive Shift
CRC Generator
CRC Check
Protocol Finite State Machine
Transmit Logic
Bit Timing Logic
Bit Timing Generator
CiTX(1) Note 1: i = 1 or 2 refers to a particular CAN module (CAN1 or CAN2).
CiRX(1)
DS70116C-page 106
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
17.3 Modes of Operation
The CAN module can operate in one of several Operation modes selected by the user. These modes include: * * * * * * Initialization Mode Disable Mode Normal Operation Mode Listen Only Mode Loopback Mode Error Recognition Mode The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter. Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable Mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.
Modes are requested by setting the REQOP<2:0> bits (CiCTRL<10:8>), except the Error Recognition mode which is requested through the RXM<1:0> bits (CiRXnCON<6:5>, where n = 0 or 1 represents a particular receive buffer). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time which is defined as at least 11 consecutive recessive bits.
17.3.3
NORMAL OPERATION MODE
17.3.1
INITIALIZATION MODE
Normal Operating mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CxTX and CxRX pins.
In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers. * * * * * All Module Control Registers Baud Rate and Interrupt Configuration Registers Bus Timing Registers Identifier Acceptance Filter Registers Identifier Acceptance Mask Registers
17.3.4
LISTEN ONLY MODE
If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.
17.3.5
LISTEN ALL MESSAGES MODE
17.3.2
DISABLE MODE
The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting the REQOP<2:0> bits to `111'. In this mode, the data which is in the message assembly buffer until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.
In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value. If the REQOP<2:0> bits (CiCTRL<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.
17.3.6
LOOPBACK MODE
If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 107
DSPIC30F5011/5013
17.4
17.4.1
Message Reception
RECEIVE BUFFERS
17.4.4
RECEIVE OVERRUN
The CAN bus module has 3 receive buffers. However, one of the receive buffers is always committed to monitoring the bus for incoming messages. This buffer is called the Message Assembly Buffer (MAB). So there are 2 receive buffers visible, RXB0 and RXB1, that can essentially instantaneously receive a complete message from the protocol engine. All messages are assembled by the MAB and are transferred to the RXBn buffers only if the acceptance filter criterion are met. When a message is received, the RXnIF flag (CiINTF<0> or CiINRF<1>) will be set. This bit can only be set by the module when a message is received. The bit is cleared by the CPU when it has completed processing the message in the buffer. If the RXnIE bit (CiINTE<0> or CiINTE<1>) is set, an interrupt will be generated when a message is received. RXF0 and RXF1 filters with RXM0 mask are associated with RXB0. The filters RXF2, RXF3, RXF4, and RXF5 and the mask RXM1 are associated with RXB1.
An overrun condition occurs when the Message Assembly Buffer (MAB) has assembled a valid received message, the message is accepted through the acceptance filters, and when the receive buffer associated with the filter has not been designated as clear of the previous message. The overrun error flag, RXnOVR (CiINTF<15> or CiINTF<14>), and the ERRIF bit (CiINTF<5>) will be set and the message in the MAB will be discarded. If the DBEN bit is clear, RXB1 and RXB0 operate independently. When this is the case, a message intended for RXB0 will not be diverted into RXB1 if RXB0 contains an unread message and the RX0OVR bit will be set. If the DBEN bit is set, the overrun for RXB0 is handled differently. If a valid message is received for RXB0 and RXFUL = 1 indicates that RXB0 is full and RXFUL = 0 indicates that RXB1 is empty, the message for RXB0 will be loaded into RXB1. An overrun error will not be generated for RXB0. If a valid message is received for RXB0 and RXFUL = 1, indicating that both RXB0 and RXB1 are full, the message will be lost and an overrun will be indicated for RXB1.
17.4.2
MESSAGE ACCEPTANCE FILTERS
The message acceptance filters and masks are used to determine if a message in the message assembly buffer should be loaded into either of the receive buffers. Once a valid message has been received into the Message Assembly Buffer (MAB), the identifier fields of the message are compared to the filter values. If there is a match, that message will be loaded into the appropriate receive buffer. The acceptance filter looks at incoming messages for the RXIDE bit (CiRXnSID<0>) to determine how to compare the identifiers. If the RXIDE bit is clear, the message is a standard frame and only filters with the EXIDE bit (CiRXFnSID<0>) clear are compared. If the RXIDE bit is set, the message is an extended frame, and only filters with the EXIDE bit set are compared. Configuring the RXM<1:0> bits to `01' or `10' can override the EXIDE bit.
17.4.5
RECEIVE ERRORS
The CAN module will detect the following receive errors: * Cyclic Redundancy Check (CRC) Error * Bit Stuffing Error * Invalid Message Receive Error These receive errors do not generate an interrupt. However, the receive error counter is incremented by one in case one of these errors occur. The RXWAR bit (CiINTF<9>) indicates that the receive error counter has reached the CPU warning limit of 96 and an interrupt is generated.
17.4.6
RECEIVE INTERRUPTS
17.4.3
MESSAGE ACCEPTANCE FILTER MASKS
Receive interrupts can be divided into 3 major groups, each including various conditions that generate interrupts: * Receive Interrupt: A message has been successfully received and loaded into one of the receive buffers. This interrupt is activated immediately after receiving the End of Frame (EOF) field. Reading the RXnIF flag will indicate which receive buffer caused the interrupt. * Wake-up Interrupt: The CAN module has woken up from Disable mode or the device has woken up from Sleep mode.
The mask bits essentially determine which bits to apply the filter to. If any mask bit is set to a zero, then that bit will automatically be accepted regardless of the filter bit. There are 2 programmable acceptance filter masks associated with the receive buffers, one for each buffer.
DS70116C-page 108
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
* Receive Error Interrupts: A receive error interrupt will be indicated by the ERRIF bit. This bit shows that an error condition occurred. The source of the error can be determined by checking the bits in the CAN Interrupt Status register, CiINTF. - Invalid Message Received: If any type of error occurred during reception of the last message, an error will be indicated by the IVRIF bit. - Receiver Overrun: The RXnOVR bit indicates that an overrun condition occurred. - Receiver Warning: The RXWAR bit indicates that the receive error counter (RERRCNT<7:0>) has reached the warning limit of 96. - Receiver Error Passive: The RXEP bit indicates that the receive error counter has exceeded the error passive limit of 127 and the module has gone into error passive state. Setting TXREQ bit simply flags a message buffer as enqueued for transmission. When the module detects an available bus, it begins transmitting the message which has been determined to have the highest priority. If the transmission completes successfully on the first attempt, the TXREQ bit is cleared automatically, and an interrupt is generated if TXIE was set. If the message transmission fails, one of the error condition flags will be set, and the TXREQ bit will remain set indicating that the message is still pending for transmission. If the message encountered an error condition during the transmission attempt, the TXERR bit will be set, and the error condition may cause an interrupt. If the message loses arbitration during the transmission attempt, the TXLARB bit is set. No interrupt is generated to signal the loss of arbitration.
17.5.4
ABORTING MESSAGE TRANSMISSION
17.5
17.5.1
Message Transmission
TRANSMIT BUFFERS
The system can also abort a message by clearing the TXREQ bit associated with each message buffer. Setting the ABAT bit (CiCTRL<12>) will request an abort of all pending messages. If the message has not yet started transmission, or if the message started but is interrupted by loss of arbitration or an error, the abort will be processed. The abort is indicated when the module sets the TXABT bit and the TXnIF flag is not automatically set.
The CAN module has three transmit buffers. Each of the three buffers occupies 14 bytes of data. Eight of the bytes are the maximum 8 bytes of the transmitted message. Five bytes hold the standard and extended identifiers and other message arbitration information.
17.5.5
TRANSMISSION ERRORS
The CAN module will detect the following transmission errors: * Acknowledge Error * Form Error * Bit Error These transmission errors will not necessarily generate an interrupt but are indicated by the transmission error counter. However, each of these errors will cause the transmission error counter to be incremented by one. Once the value of the error counter exceeds the value of 96, the ERRIF (CiINTF<5>) and the TXWAR bit (CiINTF<10>) are set. Once the value of the error counter exceeds the value of 96, an interrupt is generated and the TXWAR bit in the Error Flag register is set.
17.5.2
TRANSMIT MESSAGE PRIORITY
Transmit priority is a prioritization within each node of the pending transmittable messages. There are 4 levels of transmit priority. If TXPRI<1:0> (CiTXnCON<1:0>, where n = 0, 1 or 2 represents a particular transmit buffer) for a particular message buffer is set to `11', that buffer has the highest priority. If TXPRI<1:0> for a particular message buffer is set to `10' or `01', that buffer has an intermediate priority. If TXPRI<1:0> for a particular message buffer is `00', that buffer has the lowest priority.
17.5.3
TRANSMISSION SEQUENCE
To initiate transmission of the message, the TXREQ bit (CiTXnCON<3>) must be set. The CAN bus module resolves any timing conflicts between setting of the TXREQ bit and the Start of Frame (SOF), ensuring that if the priority was changed, it is resolved correctly before the SOF occurs. When TXREQ is set, the TXABT (CiTXnCON<6>), TXLARB (CiTXnCON<5>) and TXERR (CiTXnCON<4>) flag bits are automatically cleared.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 109
DSPIC30F5011/5013
17.5.6 TRANSMIT INTERRUPTS
17.6
Baud Rate Setting
Transmit interrupts can be divided into 2 major groups, each including various conditions that generate interrupts: * Transmit Interrupt: At least one of the three transmit buffers is empty (not scheduled) and can be loaded to schedule a message for transmission. Reading the TXnIF flags will indicate which transmit buffer is available and caused the interrupt. * Transmit Error Interrupts: A transmission error interrupt will be indicated by the ERRIF flag. This flag shows that an error condition occurred. The source of the error can be determined by checking the error flags in the CAN Interrupt Status register, CiINTF. The flags in this register are related to receive and transmit errors. - Transmitter Warning Interrupt: The TXWAR bit indicates that the transmit error counter has reached the CPU warning limit of 96. - Transmitter Error Passive: The TXEP bit (CiINTF<12>) indicates that the transmit error counter has exceeded the error passive limit of 127 and the module has gone to error passive state. - Bus Off: The TXBO bit (CiINTF<13>) indicates that the transmit error counter has exceeded 255 and the module has gone to the bus off state.
All nodes on any particular CAN bus must have the same nominal bit rate. In order to set the baud rate, the following parameters have to be initialized: * * * * * * Synchronization Jump Width Baud Rate Prescaler Phase Segments Length determination of Phase Segment 2 Sample Point Propagation Segment bits
17.6.1
BIT TIMING
All controllers on the CAN bus must have the same baud rate and bit length. However, different controllers are not required to have the same master oscillator clock. At different clock frequencies of the individual controllers, the baud rate has to be adjusted by adjusting the number of time quanta in each segment. The nominal bit time can be thought of as being divided into separate non-overlapping time segments. These segments are shown in Figure 17-2. * * * * Synchronization Segment (Sync Seg) Propagation Time Segment (Prop Seg) Phase Segment 1 (Phase1 Seg) Phase Segment 2 (Phase2 Seg)
The time segments and also the nominal bit time are made up of integer units of time called time quanta or TQ. By definition, the nominal bit time has a minimum of 8 TQ and a maximum of 25 TQ. Also, by definition, the minimum nominal bit time is 1 sec corresponding to a maximum bit rate of 1 MHz.
FIGURE 17-2:
Input Signal
CAN BIT TIMING
Sync
Prop Segment
Phase Segment 1 Sample Point
Phase Segment 2
Sync
TQ
DS70116C-page 110
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
17.6.2 PRESCALER SETTING 17.6.5 SAMPLE POINT
There is a programmable prescaler with integral values ranging from 1 to 64, in addition to a fixed divide-by-2 for clock generation. The time quantum (TQ) is a fixed unit of time derived from the oscillator period, and is given by Equation 17-1, where FCAN is FCY (if the CANCKS bit is set) or 4FCY (if CANCKS is clear). Note: FCAN must not exceed 30 MHz. If CANCKS = 0, then FCY must not exceed 7.5 MHz. The sample point is the point of time at which the bus level is read and interpreted as the value of that respective bit. The location is at the end of Phase1 Seg. If the bit timing is slow and contains many TQ, it is possible to specify multiple sampling of the bus line at the sample point. The level determined by the CAN bus then corresponds to the result from the majority decision of three values. The majority samples are taken at the sample point and twice before with a distance of TQ/2. The CAN module allows the user to choose between sampling three times at the same point or once at the same point, by setting or clearing the SAM bit (CiCFG2<6>). Typically, the sampling of the bit should take place at about 60 - 70% through the bit time, depending on the system parameters.
EQUATION 17-1:
TIME QUANTUM FOR CLOCK GENERATION
TQ = 2 (BRP<5:0> + 1) / FCAN
17.6.3
PROPAGATION SEGMENT
17.6.6
SYNCHRONIZATION
This part of the bit time is used to compensate physical delay times within the network. These delay times consist of the signal propagation time on the bus line and the internal delay time of the nodes. The Prop Seg can be programmed from 1 TQ to 8 TQ by setting the PRSEG<2:0> bits (CiCFG2<2:0>).
17.6.4
PHASE SEGMENTS
To compensate for phase shifts between the oscillator frequencies of the different bus stations, each CAN controller must be able to synchronize to the relevant signal edge of the incoming signal. When an edge in the transmitted data is detected, the logic will compare the location of the edge to the expected time (Synchronous Segment). The circuit will then adjust the values of Phase1 Seg and Phase2 Seg. There are 2 mechanisms used to synchronize.
The phase segments are used to optimally locate the sampling of the received bit within the transmitted bit time. The sampling point is between Phase1 Seg and Phase2 Seg. These segments are lengthened or shortened by resynchronization. The end of the Phase1 Seg determines the sampling point within a bit period. The segment is programmable from 1 TQ to 8 TQ. Phase2 Seg provides delay to the next transmitted data transition. The segment is programmable from 1 TQ to 8 TQ, or it may be defined to be equal to the greater of Phase1 Seg or the information processing time (2 TQ). The Phase1 Seg is initialized by setting bits SEG1PH<2:0> (CiCFG2<5:3>), and Phase2 Seg is initialized by setting SEG2PH<2:0> (CiCFG2<10:8>). The following requirement must be fulfilled while setting the lengths of the phase segments: Prop Seg + Phase1 Seg > = Phase2 Seg
17.6.6.1
Hard Synchronization
Hard synchronization is only done whenever there is a `recessive' to `dominant' edge during bus Idle indicating the start of a message. After hard synchronization, the bit time counters are restarted with the Sync Seg. Hard synchronization forces the edge which has caused the hard synchronization to lie within the synchronization segment of the restarted bit time. If a hard synchronization is done, there will not be a resynchronization within that bit time.
17.6.6.2
Resynchronization
As a result of resynchronization, Phase1 Seg may be lengthened or Phase2 Seg may be shortened. The amount of lengthening or shortening of the phase buffer segment has an upper bound known as the synchronization jump width, and is specified by the SJW<1:0> bits (CiCFG1<7:6>). The value of the synchronization jump width will be added to Phase1 Seg or subtracted from Phase2 Seg. The resynchronization jump width is programmable between 1 TQ and 4 TQ. The following requirement must be fulfilled while setting the SJW<1:0> bits: Phase2 Seg > Synchronization Jump Width
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 111
TABLE 17-1:
Bit 13 -- -- -- Receive Acceptance Filter 1 Standard Identifier <10:0> -- -- Receive Acceptance Filter 2 Standard Identifier <10:0> -- -- Receive Acceptance Filter 3 Standard Identifier <10:0> -- -- Receive Acceptance Filter 4 Standard Identifier <10:0> -- -- Receive Acceptance Filter 5 Standard Identifier <10:0> -- -- -- -- -- -- Receive Acceptance Filter 5 Extended Identifier <17:6> -- -- -- -- -- -- MIDE -- -- -- -- -- -- Receive Acceptance Filter 4 Extended Identifier <17:6> -- -- -- -- -- -- -- -- -- -- -- Receive Acceptance Filter 3 Extended Identifier <17:6> -- -- -- -- -- -- -- -- -- -- -- -- Receive Acceptance Filter 2 Extended Identifier <17:6> -- -- -- -- -- -- -- -- -- -- -- Receive Acceptance Filter 1 Extended Identifier <17:6> -- -- -- -- -- -- -- -- -- -- -- Receive Acceptance Filter 0 Extended Identifier <17:6> Receive Acceptance Filter 0 Standard Identifier <10:0> -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State -- -- EXIDE 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000
CAN1 REGISTER MAP
SFR Name
Addr.
Bit 15
Bit 14
C1RXF0SID
0300
--
C1RXF0EIDH
0302
--
C1RXF0EIDL -- -- -- --
0304
Receive Acceptance Filter 0 Extended Identifier <5:0>
DS70116C-page 112
EXIDE 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 -- -- -- -- EXIDE 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 EXIDE 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 EXIDE 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 EXIDE 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu -- -- -- -- -- -- -- MIDE uuuu uu00 0000 0000 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu -- -- -- -- Transmit Buffer 2 Standard Identifier <5:0> Transmit Buffer 2 Extended Identifier <13:6> TXRB0 DLC<3:0> Transmit Buffer 2 Byte 0 Transmit Buffer 2 Byte 2 Transmit Buffer 2 Byte 4 Transmit Buffer 2 Byte 6 -- -- -- -- -- -- TXRTR -- -- -- TXRB1 TXRB0 -- TXABT TXLARB TXERR TXREQ Transmit Buffer 1 Standard Identifier <5:0> Transmit Buffer 1 Extended Identifier <13:6> DLC<3:0> -- -- -- -- TXPRI<1:0> SRR -- -- -- -- -- SRR -- uuuu uu00 0000 0000 TXIDE uuuu u000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu uuuu uuuu u000 uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000 TXIDE uuuu u000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu uuuu uuuu u000 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Receive Acceptance Mask 0 Standard Identifier <10:0> Receive Acceptance Mask 0 Extended Identifier <17:6> -- -- -- -- -- TXRTR TXRB1 -- -- -- -- -- -- -- Receive Acceptance Mask 1 Standard Identifier <10:0> Receive Acceptance Mask 1 Extended Identifier <17:6> -- -- -- Transmit Buffer 2 Byte 1 Transmit Buffer 2 Byte 3 Transmit Buffer 2 Byte 5 Transmit Buffer 2 Byte 7 -- -- -- -- --
C1RXF1SID
0308
--
C1RXF1EIDH 030A
--
C1RXF1EIDL
030C
Receive Acceptance Filter 1 Extended Identifier <5:0>
C1RXF2SID
0310
--
C1RXF2EIDH
0312
--
C1RXF2EIDL
0314
Receive Acceptance Filter 2 Extended Identifier <5:0>
C1RXF3SID
0318
--
C1RXF3EIDH 031A
--
C1RXF3EIDL
031C
Receive Acceptance Filter 3 Extended Identifier <5:0>
C1RXF4SID
0320
--
DSPIC30F5011/5013
C1RXF4EIDH
0322
--
C1RXF4EIDL
0324
Receive Acceptance Filter 4 Extended Identifier <5:0>
C1RXF5SID
0328
--
C1RXF5EIDH 032A
--
C1RXF5EIDL
032C
Receive Acceptance Filter 5 Extended Identifier <5:0>
C1RXM0SID
0330
--
Preliminary
C1RXM0EIDH 0332
--
C1RXM0EIDL
0334
Receive Acceptance Mask 0 Extended Identifier <5:0>
C1RXM1SID
0338
--
C1RXM1EIDH 033A
--
C1RXM1EIDL 033C
Receive Acceptance Mask 1 Extended Identifier <5:0>
C1TX2SID
0340
Transmit Buffer 2 Standard Identifier <10:6>
C1TX2EID
0342
Transmit Buffer 2 Extended Identifier <17:14>
C1TX2DLC
0344
Transmit Buffer 2 Extended Identifier <5:0>
C1TX2B1
0346
C1TX2B2
0348
C1TX2B3
034A
C1TX2B4
034C
C1TX2CON
034E
--
C1TX1SID
0350
Transmit Buffer 1 Standard Identifier <10:6>
C1TX1EID
0352
Transmit Buffer 1 Extended Identifier <17:14>
2004 Microchip Technology Inc.
C1TX1DLC
0354
Transmit Buffer 1 Extended Identifier <5:0>
Legend:
u = uninitialized bit
TABLE 17-1:
Bit 13 Transmit Buffer 1 Byte 1 Transmit Buffer 1 Byte 3 Transmit Buffer 1 Byte 5 Transmit Buffer 1 Byte 7 -- -- -- TXRTR -- Transmit Buffer 0 Byte 0 Transmit Buffer 0 Byte 2 Transmit Buffer 0 Byte 4 Transmit Buffer 0 Byte 6 -- Receive Buffer 1 Standard Identifier <10:0> -- RXRTR RXRB1 -- -- -- Receive Buffer 1 Extended Identifier <17:6> RXRB0 Receive Buffer 1 Byte 0 Receive Buffer 1 Byte 2 Receive Buffer 1 Byte 4 Receive Buffer 1 Byte 6 -- -- -- RXFUL -- -- -- RXRTRRO FILHIT<2:0> SRR DLC<3:0> -- -- -- TXABT TXLARB TXERR TXREQ -- TXPRI<1:0> SRR TXRB1 TXRB0 DLC<3:0> -- -- -- Transmit Buffer 0 Extended Identifier <13:6> -- -- -- Transmit Buffer 0 Standard Identifier <5:0> SRR -- -- -- -- -- -- -- TXABT TXLARB TXERR TXREQ -- TXPRI<1:0> Transmit Buffer 1 Byte 6 Transmit Buffer 1 Byte 4 Transmit Buffer 1 Byte 2 Transmit Buffer 1 Byte 0 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
CAN1 REGISTER MAP (CONTINUED)
uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000
SFR Name
Addr.
Bit 15
Bit 14
C1TX1B1
0356
C1TX1B2
0358
C1TX1B3
035A
C1TX1B4
035C
C1TX1CON
035E
--
C1TX0SID --
0360
Transmit Buffer 0 Standard Identifier <10:6>
TXIDE uuuu u000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu uuuu uuuu u000 uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000 RXIDE 000u uuuu uuuu uuuu 0000 uuuu uuuu uuuu uuuu uuuu 000u uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000 RXIDE 000u uuuu uuuu uuuu 0000 uuuu uuuu uuuu
2004 Microchip Technology Inc.
Transmit Buffer 0 Byte 1 Transmit Buffer 0 Byte 3 Transmit Buffer 0 Byte 5 Transmit Buffer 0 Byte 7 -- -- -- -- -- -- -- -- Receive Buffer 1 Byte 1 Receive Buffer 1 Byte 3 Receive Buffer 1 Byte 5 Receive Buffer 1 Byte 7 -- -- -- RXRTR RXRB1 -- -- -- -- -- -- Receive Buffer 0 Standard Identifier <10:0> Receive Buffer 0 Extended Identifier <17:6> -- -- -- RXRB0 Receive Buffer 0 Byte 0 Receive Buffer 0 Byte 2 Receive Buffer 0 Byte 4 Receive Buffer 0 Byte 6 -- -- REQOP<2:0> -- -- SEG2PH<2:0> TXWAR RXWAR EWARN -- -- -- -- -- RXFUL -- OPMODE<2:0> SJW<1:0> SEG2PHTS IVRIF IVRIE SAM WAKIF WAKIE SEG1PH<2:0> ERRIF ERRIE TX2IF TX2IE TX1IF TX1IE -- -- -- DLC<3:0> Receive Buffer 0 Byte 1 Receive Buffer 0 Byte 3 Receive Buffer 0 Byte 5 Receive Buffer 0 Byte 7 -- -- -- -- TXBO -- -- -- TXEP RXEP -- -- -- -- -- CSIDLE ABAT CANCKS -- -- -- ICODE<2:0> BRP<5:0> PRSEG<2:0> TX0IF TX0IE Receive Error Count Register RX1IF RX1E -- -- Transmit Error Count Register
C1TX0EID
0362
Transmit Buffer 0 Extended Identifier <17:14>
C1TX0DLC
0364
Transmit Buffer 0 Extended Identifier <5:0>
C1TX0B1
0366
C1TX0B2
0368
C1TX0B3
036A
C1TX0B4
036C
C1TX0CON
036E
--
C1RX1SID
0370
--
C1RX1EID
0372
--
C1RX1DLC
0374
Receive Buffer 1 Extended Identifier <5:0>
C1RX1B1
0376
C1RX1B2
0378
Preliminary
C1RX1B3
037A
C1RX1B4
037C
C1RX1CON
037E
--
C1RX0SID
0380
--
C1RX0EID
0382
--
C1RX0DLC
0384
Receive Buffer 0 Extended Identifier <5:0>
uuuu uuuu 000u uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu RXRTRRO DBEN JTOFF FILHIT0 0000 0000 0000 0000 0000 0100 1000 0000 0000 0000 0000 0000 0u00 0uuu uuuu uuuu RX0IF 0000 0000 0000 0000 RX0IE 0000 0000 0000 0000 0000 0000 0000 0000
C1RX0B1
0386
C1RX0B2
0388
C1RX0B3
038A
C1RX0B4
038C
C1RX0CON
038E
--
C1CTRL
0390
CANCAP
C1CFG1
0392
--
C1CFG2
0394
--
WAKFIL
C1INTF
0396
RX0OVR
RX1OVR
C1INTE
0398
--
C1EC
039A
DSPIC30F5011/5013
DS70116C-page 113
Legend:
u = uninitialized bit
TABLE 17-2:
Bit 13 -- -- -- Receive Acceptance Filter 1 Standard Identifier <10:0> -- -- Receive Acceptance Filter 2 Standard Identifier <10:0> -- -- Receive Acceptance Filter 3 Standard Identifier <10:0> -- -- Receive Acceptance Filter 4 Standard Identifier <10:0> -- -- Receive Acceptance Filter 5 Standard Identifier <10:0> -- -- -- -- -- -- Receive Acceptance Filter 5 Extended Identifier <17:6> -- -- -- -- -- -- MIDE -- -- -- -- -- Receive Acceptance Filter 4 Extended Identifier <17:6> -- -- -- -- -- EXIDE -- -- -- -- -- -- Receive Acceptance Filter 3 Extended Identifier <17:6> -- -- -- -- EXIDE -- -- -- -- -- -- -- -- -- Receive Acceptance Filter 2 Extended Identifier <17:6> -- EXIDE -- -- -- -- -- -- -- -- -- -- EXIDE Receive Acceptance Filter 1 Extended Identifier <17:6> -- EXIDE -- -- -- -- -- -- -- -- -- -- Receive Acceptance Filter 0 Extended Identifier <17:6> Receive Acceptance Filter 0 Standard Identifier <10:0> -- EXIDE Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State -- --
CAN2 REGISTER MAP
000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu uuuu uu00 0000 0000 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu -- -- -- -- -- -- -- MIDE uuuu uu00 0000 0000 000u uuuu uuuu uu0u 0000 uuuu uuuu uuuu -- -- -- -- Transmit Buffer 2 Standard Identifier <5:0> Transmit Buffer 2 Extended Identifier <13:6> TXRB0 DLC<3:0> Transmit Buffer 2 Byte 0 Transmit Buffer 2 Byte 2 Transmit Buffer 2 Byte 4 Transmit Buffer 2 Byte 6 -- -- -- -- -- -- -- -- -- -- TXABT TXLARB TXERR TXREQ Transmit Buffer 1 Standard Identifier <5:0> Transmit Buffer 1 Extended Identifier <13:6> -- TXPRI<1:0> SRR TXIDE -- -- -- -- -- SRR -- TXIDE uuuu uu00 0000 0000 uuuu u000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu uuuu uuuu u000 uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000 uuuu u000 uuuu uuuu uuuu 0000 uuuu uuuu
SFR Name
Addr.
Bit 15
Bit 14
C2RXF0SID
03C0
--
C2RXF0EIDH
03C2
--
DS70116C-page 114
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Receive Acceptance Mask 0 Standard Identifier <10:0> Receive Acceptance Mask 0 Extended Identifier <17:6> -- -- -- -- -- TXRTR TXRB1 -- -- -- -- -- -- -- Receive Acceptance Mask 1 Standard Identifier <10:0> Receive Acceptance Mask 1 Extended Identifier <17:6> -- -- -- Transmit Buffer 2 Byte 1 Transmit Buffer 2 Byte 3 Transmit Buffer 2 Byte 5 Transmit Buffer 2 Byte 7 -- -- -- -- --
C2RXF0EIDL
03C4
Receive Acceptance Filter 0 Extended Identifier <5:0>
C2RXF1SID
03C8
--
C2RXF1EIDH
03CA
--
C2RXF1EIDL
03CC
Receive Acceptance Filter 1 Extended Identifier <5:0>
C2RXF2SID
03D0
--
C2RXF2EIDH
03D2
--
C2RXF2EIDL
03D4
Receive Acceptance Filter 2 Extended Identifier <5:0>
C2RXF3SID
03D8
--
C2RXF3EIDH
03DA
--
C2RXF3EIDL
03DC
Receive Acceptance Filter 3 Extended Identifier <5:0>
C2RXF4SID
03E0
--
DSPIC30F5011/5013
C2RXF4EIDH
03E2
--
C2RXF4EIDL
03E4
Receive Acceptance Filter 4 Extended Identifier <5:0>
C2RXF5SID
03E8
--
C2RXF5EIDH
03EA
--
C2RXF5EIDL
03EC
Receive Acceptance Filter 5 Extended Identifier <5:0>
Preliminary
C2RXM0SID
03F0
--
C2RXM0EIDH
03F2
--
C2RXM0EIDL
03F4
Receive Acceptance Mask 0 Extended Identifier <5:0>
C2RXM1SID
03F8
--
C2RXM1EIDH
03FA
--
C2RXM1EIDL
03FC
Receive Acceptance Mask 1 Extended Identifier <5:0>
C2TX2SID
0400
Transmit Buffer 2 Standard Identifier <10:6>
C2TX2EID
0402
Transmit Buffer 2 Extended Identifier <17:14>
C2TX2DLC
0404
Transmit Buffer 2 Extended Identifier <5:0>
C2TX2B1
0406
C2TX2B2
0408
C2TX2B3
040A
C2TX2B4
040C
C2TX2CON
040E
--
C2TX1SID
0410
Transmit Buffer 1 Standard Identifier <10:6>
C2TX1EID
0412
Transmit Buffer 1 Extended Identifier <17:14>
2004 Microchip Technology Inc.
Legend:
u = uninitialized bit
TABLE 17-2:
Bit 13 TXRTR Transmit Buffer 1 Byte 0 Transmit Buffer 1 Byte 2 Transmit Buffer 1 Byte 4 Transmit Buffer 1 Byte 6 -- -- -- TXRTR -- Transmit Buffer 0 Byte 0 Transmit Buffer 0 Byte 2 Transmit Buffer 0 Byte 4 Transmit Buffer 0 Byte 6 -- Receive Buffer 1 Standard Identifier <10:0> -- RXRTR RXRB1 -- -- -- Receive Buffer 1 Extended Identifier <17:6> RXRB0 Receive Buffer 1 Byte 0 Receive Buffer 1 Byte 2 Receive Buffer 1 Byte 4 Receive Buffer 1 Byte 6 -- -- -- RXFUL -- -- -- RXRTRRO FILHIT<2:0> SRR RXIDE DLC<3:0> -- -- -- TXABT TXLARB TXERR TXREQ -- TXPRI<1:0> SRR RXIDE TXRB1 TXRB0 DLC<3:0> -- -- Transmit Buffer 0 Extended Identifier <13:6> -- -- -- -- Transmit Buffer 0 Standard Identifier <5:0> SRR -- -- -- TXABT TXLARB TXERR TXREQ -- TXPRI<1:0> TXIDE TXRB1 TXRB0 DLC<3:0> -- -- -- Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
CAN2 REGISTER MAP (CONTINUED)
uuuu uuuu uuuu u000 uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000 uuuu u000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu uuuu uuuu u000 uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000 000u uuuu uuuu uuuu 0000 uuuu uuuu uuuu uuuu uuuu 000u uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000 000u uuuu uuuu uuuu 0000 uuuu uuuu uuuu -- -- -- RXRB0 Receive Buffer 0 Byte 0 Receive Buffer 0 Byte 2 Receive Buffer 0 Byte 4 Receive Buffer 0 Byte 6 -- -- REQOP<2:0> -- -- SEG2PH<2:0> TXWAR -- RXWAR -- EWARN -- -- -- RXFUL -- OPMODE<2:0> SJW<1:0> SEG2PHTS IVRIF IVRIE SAM WAKIF WAKIE ERRIF ERRIE SEG1PH<2:0> TX2IF TX2IE TX1IF TX1IE Receive Error Count Register TX0IF TX0IE -- -- -- RXRTRRO DBEN ICODE<2:0> BRP<5:0> PRSEG<2:0> RX1IF RX1E RX0IF RX0IE JTOFF FILHIT0 -- DLC<3:0> uuuu uuuu 000u uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000 0000 0100 1000 0000 0000 0000 0000 0000 0u00 0uuu uuuu uuuu 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
SFR Name
Addr.
Bit 15
Bit 14
C2TX1DLC Transmit Buffer 1 Byte 1 Transmit Buffer 1 Byte 3 Transmit Buffer 1 Byte 5 Transmit Buffer 1 Byte 7 -- -- -- --
0414
Transmit Buffer 1 Extended Identifier <5:0>
C2TX1B1
0416
C2TX1B2
0418
C2TX1B3
041A
C2TX1B4
041C
C2TX1CON
041E
--
C2TX0SID --
0420
Transmit Buffer 0 Standard Identifier <10:6>
2004 Microchip Technology Inc.
Transmit Buffer 0 Byte 1 Transmit Buffer 0 Byte 3 Transmit Buffer 0 Byte 5 Transmit Buffer 0 Byte 7 -- -- -- -- -- -- -- -- Receive Buffer 1 Byte 1 Receive Buffer 1 Byte 3 Receive Buffer 1 Byte 5 Receive Buffer 1 Byte 7 -- -- -- RXRTR RXRB1 -- -- -- -- -- -- Receive Buffer 0 Standard Identifier <10:0> Receive Buffer 0 Extended Identifier <17:6> Receive Buffer 0 Byte 1 Receive Buffer 0 Byte 3 Receive Buffer 0 Byte 5 Receive Buffer 0 Byte 7 -- -- -- -- TXBO -- -- -- TXEP RXEP -- -- -- -- -- CSIDLE ABAT CANCKS -- -- -- -- Transmit Error Count Register
C2TX0EID
0422
Transmit Buffer 0 Extended Identifier <17:14>
C2TX0DLC
0424
Transmit Buffer 0 Extended Identifier <5:0>
C2TX0B1
0426
C2TX0B2
0428
C2TX0B3
042A
C2TX0B4
042C
C2TX0CON
042E
--
C2RX1SID
0430
--
C2RX1EID
0432
--
C2RX1DLC
0434
Receive Buffer 1 Extended Identifier <5:0>
C2RX1B1
0436
C2RX1B2
0438
Preliminary
C2RX1B3
043A
C2RX1B4
043C
C2RX1CON
043E
--
C2RX0SID
0440
--
C2RX0EID
0442
--
C2RX0DLC
0444
Receive Buffer 0 Extended Identifier <5:0>
C2RX0B1
0446
C2RX0B2
0448
C2RX0B3
044A
C2RX0B4
044C
C2RX0CON
044E
--
C2CTRL
0450
CANCAP
C2CFG1
0452
--
C2CFG2
0454
--
WAKFIL
C2INTF
0456
RX0OVR
RX1OVR
C2INTE
0458
--
C2EC
045A
DSPIC30F5011/5013
DS70116C-page 115
Legend:
u = uninitialized bit
DSPIC30F5011/5013
NOTES:
DS70116C-page 116
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
18.0
18.1
DATA CONVERTER INTERFACE (DCI) MODULE
Module Introduction
18.2.3.1
COFS PIN
The dsPIC30F Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), A/D converters and D/A converters. The following interfaces are supported: * Framed Synchronous Serial Transfer (Single or Multi-Channel) * Inter-IC Sound (I2S) Interface * AC-Link Compliant mode The DCI module provides the following general features: * Programmable word size up to 16 bits * Support for up to 16 time slots, for a maximum frame size of 256 bits * Data buffering for up to 4 samples without CPU overhead
The Codec frame synchronization (COFS) pin is used to synchronize data transfers that occur on the CSDO and CSDI pins. The COFS pin may be configured as an input or an output. The data direction for the COFS pin is determined by the COFSD control bit in the DCICON1 register. The DCI module accesses the shadow registers while the CPU is in the process of accessing the memory mapped buffer registers.
18.2.4
BUFFER DATA ALIGNMENT
Data values are always stored left justified in the buffers since most Codec data is represented as a signed 2's complement fractional number. If the received word length is less than 16 bits, the unused LS bits in the receive buffer registers are set to `0' by the module. If the transmitted word length is less than 16 bits, the unused LS bits in the transmit buffer register are ignored by the module. The word length setup is described in subsequent sections of this document.
18.2
Module I/O Pins
18.2.5
TRANSMIT/RECEIVE SHIFT REGISTER
There are four I/O pins associated with the module. When enabled, the module controls the data direction of each of the four pins.
18.2.1
CSCK PIN
The DCI module has a 16-bit shift register for shifting serial data in and out of the module. Data is shifted in/ out of the shift register MS bit first, since audio PCM data is transmitted in signed 2's complement format.
The CSCK pin provides the serial clock for the DCI module. The CSCK pin may be configured as an input or output using the CSCKD control bit in the DCICON2 SFR. When configured as an output, the serial clock is provided by the dsPIC30F. When configured as an input, the serial clock must be provided by an external device.
18.2.6
DCI BUFFER CONTROL
18.2.2
CSDO PIN
The serial data output (CSDO) pin is configured as an output only pin when the module is enabled. The CSDO pin drives the serial bus whenever data is to be transmitted. The CSDO pin is tri-stated or driven to `0' during CSCK periods when data is not transmitted, depending on the state of the CSDOM control bit. This allows other devices to place data on the serial bus during transmission periods not used by the DCI module.
The DCI module contains a buffer control unit for transferring data between the shadow buffer memory and the serial shift register. The buffer control unit is a simple 2-bit address counter that points to word locations in the shadow buffer memory. For the receive memory space (high address portion of DCI buffer memory), the address counter is concatenated with a `0' in the MSb location to form a 3-bit address. For the transmit memory space (high portion of DCI buffer memory), the address counter is concatenated with a `1' in the MSb location. Note: The DCI buffer control unit always accesses the same relative location in the transmit and receive buffers, so only one address counter is provided.
18.2.3
CSDI PIN
The serial data input (CSDI) pin is configured as an input only pin when the module is enabled.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 117
DSPIC30F5011/5013
FIGURE 18-1: DCI MODULE BLOCK DIAGRAM
BCG Control bits SCKD FOSC/4 Sample Rate Generator CSCK
FSD Word Size Selection bits Frame Length Selection bits 16-bit Data Bus DCI Mode Selection bits Frame Synchronization Generator COFS
Receive Buffer Registers w/Shadow DCI Buffer Control Unit 15 Transmit Buffer Registers w/Shadow DCI Shift Register 0 CSDI
CSDO
DS70116C-page 118
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
18.3
18.3.1
DCI Module Operation
MODULE ENABLE
18.3.4
FRAME SYNC MODE CONTROL BITS
The DCI module is enabled or disabled by setting/ clearing the DCIEN control bit in the DCICON1 SFR. Clearing the DCIEN control bit has the effect of resetting the module. In particular, all counters associated with CSCK generation, frame sync, and the DCI buffer control unit are reset. The DCI clocks are shutdown when the DCIEN bit is cleared. When enabled, the DCI controls the data direction for the four I/O pins associated with the module. The Port, LAT and TRIS register values for these I/O pins are overridden by the DCI module when the DCIEN bit is set. It is also possible to override the CSCK pin separately when the bit clock generator is enabled. This permits the bit clock generator to operate without enabling the rest of the DCI module.
The type of frame sync signal is selected using the Frame Synchronization mode control bits (COFSM<1:0>) in the DCICON1 SFR. The following operating modes can be selected: * * * * Multi-Channel mode I2S mode AC-Link mode (16-bit) AC-Link mode (20-bit)
The operation of the COFSM control bits depends on whether the DCI module generates the frame sync signal as a master device, or receives the frame sync signal as a slave device. The master device in a DSP/Codec pair is the device that generates the frame sync signal. The frame sync signal initiates data transfers on the CSDI and CSDO pins and usually has the same frequency as the data sample rate (COFS). The DCI module is a frame sync master if the COFSD control bit is cleared and is a frame sync slave if the COFSD control bit is set.
18.3.2
WORD SIZE SELECTION BITS
The WS<3:0> word size selection bits in the DCICON2 SFR determine the number of bits in each DCI data word. Essentially, the WS<3:0> bits determine the counting period for a 4-bit counter clocked from the CSCK signal. Any data length, up to 16-bits, may be selected. The value loaded into the WS<3:0> bits is one less the desired word length. For example, a 16-bit data word size is selected when WS<3:0> = 1111. Note: These WS<3:0> control bits are used only in the Multi-Channel and I2S modes. These bits have no effect in AC-Link mode since the data slot sizes are fixed by the protocol.
18.3.5
MASTER FRAME SYNC OPERATION
When the DCI module is operating as a frame sync master device (COFSD = 0), the COFSM mode bits determine the type of frame sync pulse that is generated by the frame sync generator logic. A new COFS signal is generated when the frame sync generator resets to `0'. In the Multi-Channel mode, the frame sync pulse is driven high for the CSCK period to initiate a data transfer. The number of CSCK cycles between successive frame sync pulses will depend on the word size and frame sync generator control bits. A timing diagram for the frame sync signal in Multi-Channel mode is shown in Figure 18-2. In the AC-Link mode of operation, the frame sync signal has a fixed period and duty cycle. The AC-Link frame sync signal is high for 16 CSCK cycles and is low for 240 CSCK cycles. A timing diagram with the timing details at the start of an AC-Link frame is shown in Figure 18-3. In the I2S mode, a frame sync signal having a 50% duty cycle is generated. The period of the I2S frame sync signal in CSCK cycles is determined by the word size and frame sync generator control bits. A new I2S data transfer boundary is marked by a high-to-low or a low-to-high transition edge on the COFS pin.
18.3.3
FRAME SYNC GENERATOR
The frame sync generator (COFSG) is a 4-bit counter that sets the frame length in data words. The frame sync generator is incremented each time the word size counter is reset (refer to Section 18.3.2). The period for the frame synchronization generator is set by writing the COFSG<3:0> control bits in the DCICON2 SFR. The COFSG period in clock cycles is determined by the following formula:
EQUATION 18-1:
COFSG PERIOD
Frame Length = Word Length * (FSG Value + 1) Frame lengths, up to 16 data words, may be selected. The frame length in CSCK periods can vary up to a maximum of 256 depending on the word size that is selected. Note: The COFSG control bits will have no effect in AC-Link mode since the frame length is set to 256 CSCK periods by the protocol.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 119
DSPIC30F5011/5013
18.3.6 SLAVE FRAME SYNC OPERATION
When the DCI module is operating as a frame sync slave (COFSD = 1), data transfers are controlled by the Codec device attached to the DCI module. The COFSM control bits control how the DCI module responds to incoming COFS signals. In the Multi-Channel mode, a new data frame transfer will begin one CSCK cycle after the COFS pin is sampled high (see Figure 18-2). The pulse on the COFS pin resets the frame sync generator logic. In the I2S mode, a new data word will be transferred one CSCK cycle after a low-to-high or a high-to-low transition is sampled on the COFS pin. A rising or falling edge on the COFS pin resets the frame sync generator logic. In the AC-Link mode, the tag slot and subsequent data slots for the next frame will be transferred one CSCK cycle after the COFS pin is sampled high. The COFSG and WS bits must be configured to provide the proper frame length when the module is operating in the Slave mode. Once a valid frame sync pulse has been sampled by the module on the COFS pin, an entire data frame transfer will take place. The module will not respond to further frame sync pulses until the data frame transfer has completed.
FIGURE 18-2:
FRAME SYNC TIMING, MULTI-CHANNEL MODE
CSCK COFS
CSDI/CSDO
MSB
LSB
FIGURE 18-3:
FRAME SYNC TIMING, AC-LINK START OF FRAME
BIT_CLK
CSDO or CSDI
S12 S12 S12 Tag Tag Tag bit 2 bit 1 LSb MSb bit 14 bit 13
SYNC
FIGURE 18-4:
I2S INTERFACE FRAME SYNC TIMING
CSCK CSDI or CSDO LSB
MSB
LSB MSB
WS
Note:
A 5-bit transfer is shown here for illustration purposes. The I2S protocol does not specify word length - this will be system dependent.
DS70116C-page 120
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
18.3.7 BIT CLOCK GENERATOR 18.3.8
The DCI module has a dedicated 12-bit time base that produces the bit clock. The bit clock rate (period) is set by writing a non-zero 12-bit value to the BCG<11:0> control bits in the DCICON1 SFR. When the BCG<11:0> bits are set to zero, the bit clock will be disabled. If the BCG<11:0> bits are set to a nonzero value, the bit clock generator is enabled. These bits should be set to `0' and the CSCKD bit set to `1' if the serial clock for the DCI is received from an external device. The formula for the bit clock frequency is given in Equation 18-2.
SAMPLE CLOCK EDGE CONTROL BIT
The sample clock edge (CSCKE) control bit determines the sampling edge for the CSCK signal. If the CSCK bit is cleared (default), data will be sampled on the falling edge of the CSCK signal. The AC-Link protocols and most Multi-Channel formats require that data be sampled on the falling edge of the CSCK signal. If the CSCK bit is set, data will be sampled on the rising edge of CSCK. The I2S protocol requires that data be sampled on the rising edge of the CSCK signal.
18.3.9
DATA JUSTIFICATION CONTROL BIT
EQUATION 18-2:
BIT CLOCK FREQUENCY
FCY 2 * (BCG + 1)
FBCK =
The required bit clock frequency will be determined by the system sampling rate and frame size. Typical bit clock frequencies range from 16x to 512x the converter sample rate depending on the data converter and the communication protocol that is used. To achieve bit clock frequencies associated with common audio sampling rates, the user will need to select a crystal frequency that has an `even' binary value. Examples of such crystal frequencies are listed in Table 18-1.
In most applications, the data transfer begins one CSCK cycle after the COFS signal is sampled active. This is the default configuration of the DCI module. An alternate data alignment can be selected by setting the DJST control bit in the DCICON2 SFR. When DJST = 1, data transfers will begin during the same CSCK cycle when the COFS signal is sampled active.
18.3.10
TRANSMIT SLOT ENABLE BITS
The TSCON SFR has control bits that are used to enable up to 16 time slots for transmission. These control bits are the TSE<15:0> bits. The size of each time slot is determined by the WS<3:0> word size selection bits and can vary up to 16 bits. If a transmit time slot is enabled via one of the TSE bits (TSEx = 1), the contents of the current transmit shadow buffer location will be loaded into the CSDO Shift register and the DCI buffer control unit is incremented to point to the next location. During an unused transmit time slot, the CSDO pin will drive `0's or will be tri-stated during all disabled time slots depending on the state of the CSDOM bit in the DCICON1 SFR. The data frame size in bits is determined by the chosen data word size and the number of data word elements in the frame. If the chosen frame size has less than 16 elements, the additional slot enable bits will have no effect. Each transmit data word is written to the 16-bit transmit buffer as left justified data. If the selected word size is less than 16 bits, then the LS bits of the transmit buffer memory will have no effect on the transmitted data. The user should write `0's to the unused LS bits of each transmit buffer location.
TABLE 18-1:
DEVICE FREQUENCIES FOR COMMON CODEC CSCK FREQUENCIES
PLL 16x 8x 8x 4x FCYC 32.768 MIPs 32.768 MIPs 38.4 MIPs 38.4 MIPs
FOSC 2.048 MHz 4.096 MHz 4.800 MHz 9.600 MHz
Note 1: When the CSCK signal is applied externally (CSCKD = 1), the BCG<11:0> bits have no effect on the operation of the DCI module. 2: When the CSCK signal is applied externally (CSCKD = 1), the external clock high and low times must meet the device timing requirements.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 121
DSPIC30F5011/5013
18.3.11 RECEIVE SLOT ENABLE BITS 18.3.14 BUFFER LENGTH CONTROL
The RSCON SFR contains control bits that are used to enable up to 16 time slots for reception. These control bits are the RSE<15:0> bits. The size of each receive time slot is determined by the WS<3:0> word size selection bits and can vary from 1 to 16 bits. If a receive time slot is enabled via one of the RSE bits (RSEx = 1), the shift register contents will be written to the current DCI receive shadow buffer location and the buffer control unit will be incremented to point to the next buffer location. Data is not packed in the receive memory buffer locations if the selected word size is less than 16 bits. Each received slot data word is stored in a separate 16-bit buffer location. Data is always stored in a left justified format in the receive memory buffer. The amount of data that is buffered between interrupts is determined by the buffer length (BLEN<1:0>) control bits in the DCISTAT SFR. The size of the transmit and receive buffers may be varied from 1 to 4 data words using the BLEN control bits. The BLEN control bits are compared to the current value of the DCI buffer control unit address counter. When the 2 LS bits of the DCI address counter match the BLEN<1:0> value, the buffer control unit will be reset to `0'. In addition, the contents of the receive shadow registers are transferred to the receive buffer registers and the contents of the transmit buffer registers are transferred to the transmit shadow registers.
18.3.15
BUFFER ALIGNMENT WITH DATA FRAMES
18.3.12
SLOT ENABLE BITS OPERATION WITH FRAME SYNC
The TSE and RSE control bits operate in concert with the DCI frame sync generator. In the Master mode, a COFS signal is generated whenever the frame sync generator is reset. In the Slave mode, the frame sync generator is reset whenever a COFS pulse is received. The TSE and RSE control bits allow up to 16 consecutive time slots to be enabled for transmit or receive. After the last enabled time slot has been transmitted/ received, the DCI will stop buffering data until the next occurring COFS pulse.
There is no direct coupling between the position of the AGU address pointer and the data frame boundaries. This means that there will be an implied assignment of each transmit and receive buffer that is a function of the BLEN control bits and the number of enabled data slots via the TSE and RSE control bits. As an example, assume that a 4-word data frame is chosen and that we want to transmit on all four time slots in the frame. This configuration would be established by setting the TSE0, TSE1, TSE2, and TSE3 control bits in the TSCON SFR. With this module setup, the TXBUF0 register would be naturally assigned to slot #0, the TXBUF1 register would be naturally assigned to slot #1, and so on. Note: When more than four time slots are active within a data frame, the user code must keep track of which time slots are to be read/written at each interrupt. In some cases, the alignment between transmit/ receive buffers and their respective slot assignments could be lost. Examples of such cases include an emulation breakpoint or a hardware trap. In these situations, the user should poll the SLOT status bits to determine what data should be loaded into the buffer registers to resynchronize the software with the DCI module.
18.3.13
SYNCHRONOUS DATA TRANSFERS
The DCI buffer control unit will be incremented by one word location whenever a given time slot has been enabled for transmission or reception. In most cases, data input and output transfers will be synchronized, which means that a data sample is received for a given channel at the same time a data sample is transmitted. Therefore, the transmit and receive buffers will be filled with equal amounts of data when a DCI interrupt is generated. In some cases, the amount of data transmitted and received during a data frame may not be equal. As an example, assume a two-word data frame is used. Furthermore, assume that data is only received during slot #0 but is transmitted during slot #0 and slot #1. In this case, the buffer control unit counter would be incremented twice during a data frame but only one receive register location would be filled with data.
DS70116C-page 122
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
18.3.16 TRANSMIT STATUS BITS 18.3.19 CSDO MODE BIT
There are two transmit status bits in the DCISTAT SFR. The TMPTY bit is set when the contents of the transmit buffer registers are transferred to the transmit shadow registers. The TMPTY bit may be polled in software to determine when the transmit buffer registers may be written. The TMPTY bit is cleared automatically by the hardware when a write to one of the four transmit buffers occurs. The TUNF bit is read only and indicates that a transmit underflow has occurred for at least one of the transmit buffer registers that is in use. The TUNF bit is set at the time the transmit buffer registers are transferred to the transmit shadow registers. The TUNF status bit is cleared automatically when the buffer register that underflowed is written by the CPU. Note: The transmit status bits only indicate status for buffer locations that are used by the module. If the buffer length is set to less than four words, for example, the unused buffer locations will not affect the transmit status bits. The CSDOM control bit controls the behavior of the CSDO pin during unused transmit slots. A given transmit time slot is unused if it's corresponding TSEx bit in the TSCON SFR is cleared. If the CSDOM bit is cleared (default), the CSDO pin will be low during unused time slot periods. This mode will be used when there are only two devices attached to the serial bus. If the CSDOM bit is set, the CSDO pin will be tri-stated during unused time slot periods. This mode allows multiple devices to share the same CSDO line in a multichannel application. Each device on the CSDO line is configured so that it will only transmit data during specific time slots. No two devices will transmit data during the same time slot.
18.3.20
DIGITAL LOOPBACK MODE
Digital Loopback mode is enabled by setting the DLOOP control bit in the DCISTAT SFR. When the DLOOP bit is set, the module internally connects the CSDO signal to CSDI. The actual data input on the CSDI I/O pin will be ignored in Digital Loopback mode.
18.3.17
RECEIVE STATUS BITS
There are two receive status bits in the DCISTAT SFR. The RFUL status bit is read only and indicates that new data is available in the receive buffers. The RFUL bit is cleared automatically when all receive buffers in use have been read by the CPU. The ROV status bit is read only and indicates that a receive overflow has occurred for at least one of the receive buffer locations. A receive overflow occurs when the buffer location is not read by the CPU before new data is transferred from the shadow registers. The ROV status bit is cleared automatically when the buffer register that caused the overflow is read by the CPU. When a receive overflow occurs for a specific buffer location, the old contents of the buffer are overwritten. Note: The receive status bits only indicate status for buffer locations that are used by the module. If the buffer length is set to less than four words, for example, the unused buffer locations will not affect the transmit status bits.
18.3.21
UNDERFLOW MODE CONTROL BIT
When an underflow occurs, one of two actions may occur depending on the state of the Underflow mode (UNFM) control bit in the DCICON2 SFR. If the UNFM bit is cleared (default), the module will transmit `0's on the CSDO pin during the active time slot for the buffer location. In this Operating mode, the Codec device attached to the DCI module will simply be fed digital `silence'. If the UNFM control bit is set, the module will transmit the last data written to the buffer location. This Operating mode permits the user to send continuous data to the Codec device without consuming CPU overhead.
18.4
DCI Module Interrupts
18.3.18
SLOT STATUS BITS
The SLOT<3:0> status bits in the DCISTAT SFR indicate the current active time slot. These bits will correspond to the value of the frame sync generator counter. The user may poll these status bits in software when a DCI interrupt occurs to determine what time slot data was last received and which time slot data should be loaded into the TXBUF registers.
The frequency of DCI module interrupts is dependent on the BLEN<1:0> control bits in the DCICON2 SFR. An interrupt to the CPU is generated each time the set buffer length has been reached and a shadow register transfer takes place. A shadow register transfer is defined as the time when the previously written TXBUF values are transferred to the transmit shadow registers and new received values in the receive shadow registers are transferred into the RXBUF registers.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 123
DSPIC30F5011/5013
18.5
18.5.1
DCI Module Operation During CPU Sleep and Idle Modes
DCI MODULE OPERATION DURING CPU SLEEP MODE
The DCI module has the ability to operate while in Sleep mode and wake the CPU when the CSCK signal is supplied by an external device (CSCKD = 1). The DCI module will generate an asynchronous interrupt when a DCI buffer transfer has completed and the CPU is in Sleep mode.
The 20-bit mode treats each 256-bit AC-Link frame as sixteen, 16-bit time slots. In the 20-bit AC-Link mode, the module operates as if COFSG<3:0> = 1111 and WS<3:0> = 1111. The data alignment for 20-bit data slots is ignored. For example, an entire AC-Link data frame can be transmitted and received in a packed fashion by setting all bits in the TSCON and RSCON SFRs. Since the total available buffer length is 64 bits, it would take 4 consecutive interrupts to transfer the AC-Link frame. The application software must keep track of the current AC-Link frame segment.
18.5.2
DCI MODULE OPERATION DURING CPU IDLE MODE
18.7
I2S Mode Operation
If the DCISIDL control bit is cleared (default), the module will continue to operate normally even in Idle mode. If the DCISIDL bit is set, the module will halt when Idle mode is asserted.
18.6
AC-Link Mode Operation
The DCI module is configured for I2S mode by writing a value of `01' to the COFSM<1:0> control bits in the DCICON1 SFR. When operating in the I2S mode, the DCI module will generate frame synchronization signals with a 50% duty cycle. Each edge of the frame synchronization signal marks the boundary of a new data word transfer. The user must also select the frame length and data word size using the COFSG and WS control bits in the DCICON2 SFR.
The AC-Link protocol is a 256-bit frame with one 16-bit data slot, followed by twelve 20-bit data slots. The DCI module has two Operating modes for the AC-Link protocol. These Operating modes are selected by the COFSM<1:0> control bits in the DCICON1 SFR. The first AC-Link mode is called `16-bit AC-Link mode' and is selected by setting COFSM<1:0> = 10. The second AC-Link mode is called `20-bit AC-Link mode' and is selected by setting COFSM<1:0> = 11.
18.7.1
I2S FRAME AND DATA WORD LENGTH SELECTION
The WS and COFSG control bits are set to produce the period for one half of an I2S data frame. That is, the frame length is the total number of CSCK cycles required for a left or a right data word transfer. The BLEN bits must be set for the desired buffer length. Setting BLEN<1:0> = 01 will produce a CPU interrupt, once per I2S frame.
18.6.1
16-BIT AC-LINK MODE
In the 16-bit AC-Link mode, data word lengths are restricted to 16 bits. Note that this restriction only affects the 20-bit data time slots of the AC-Link protocol. For received time slots, the incoming data is simply truncated to 16 bits. For outgoing time slots, the 4 LS bits of the data word are set to `0' by the module. This truncation of the time slots limits the A/D and DAC data to 16 bits but permits proper data alignment in the TXBUF and RXBUF registers. Each RXBUF and TXBUF register will contain one data time slot value.
18.7.2
I2S DATA JUSTIFICATION
As per the I2S specification, a data word transfer will, by default, begin one CSCK cycle after a transition of the WS signal. A `MS bit left justified' option can be selected using the DJST control bit in the DCICON2 SFR. If DJST = 1, the I2S data transfers will be MS bit left justified. The MS bit of the data word will be presented on the CSDO pin during the same CSCK cycle as the rising or falling edge of the COFS signal. The CSDO pin is tri-stated after the data word has been sent.
18.6.2
20-BIT AC-LINK MODE
The 20-bit AC-Link mode allows all bits in the data time slots to be transmitted and received but does not maintain data alignment in the TXBUF and RXBUF registers. The 20-bit AC-Link mode functions similar to the MultiChannel mode of the DCI module, except for the duty cycle of the frame synchronization signal. The AC-Link frame synchronization signal should remain high for 16 CSCK cycles and should be low for the following 240 cycles.
DS70116C-page 124
Preliminary
2004 Microchip Technology Inc.
TABLE 18-2:
Bit 13 DCISIDL -- -- -- TSE13 RSE13 Receive Buffer #0 Data Register Receive Buffer #1 Data Register Receive Buffer #2 Data Register Receive Buffer #3 Data Register Transmit Buffer #0 Data Register Transmit Buffer #1 Data Register Transmit Buffer #2 Data Register Transmit Buffer #3 Data Register RSE12 RSE11 RSE10 RSE9 RSE8 RSE7 RSE6 RSE5 RSE4 RSE3 RSE2 RSE1 RSE0 TSE12 TSE11 TSE10 TSE9 TSE8 TSE7 TSE6 TSE5 TSE4 TSE3 TSE2 TSE1 TSE0 -- SLOT3 SLOT2 SLOT1 SLOT0 -- -- -- -- ROV RFUL TUNF TMPTY -- BCG<11:0> -- BLEN1 BLEN0 -- COFSG<3:0> -- WS<3:0> -- DLOOP CSCKD CSCKE COFSD UNFM CSDOM DJST -- -- -- COFSM1 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
DCI REGISTER MAP
COFSM0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
SFR Name
Addr.
Bit 15
Bit 14
DCICON1
0240
DCIEN
--
DCICON2
0242
--
--
DCICON3
0244
--
--
DCISTAT
0246
--
--
TSCON
0248
TSE15
TSE14
RSCON
024C
RSE15
RSE14
RXBUF0
0250
2004 Microchip Technology Inc.
RXBUF1
0252
RXBUF2
0254
RXBUF3
0256
TXBUF0
0258
TXBUF1
025A
TXBUF2
025C
TXBUF3
025E
Legend:
u = uninitialized bit
Preliminary
DSPIC30F5011/5013
DS70116C-page 125
DSPIC30F5011/5013
NOTES:
DS70116C-page 126
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
19.0 12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE
The A/D module has six 16-bit registers: * * * * * * A/D Control Register 1 (ADCON1) A/D Control Register 2 (ADCON2) A/D Control Register 3 (ADCON3) A/D Input Select Register (ADCHS) A/D Port Configuration Register (ADPCFG) A/D Input Scan Selection Register (ADCSSL)
The 12-bit Analog-to-Digital converter (A/D) allows conversion of an analog input signal to a 12-bit digital number. This module is based on a Successive Approximation Register (SAR) architecture and provides a maximum sampling rate of 100 ksps. The A/D module has up to 16 analog inputs which are multiplexed into a sample and hold amplifier. The output of the sample and hold is the input into the converter which generates the result. The analog reference voltage is software selectable to either the device supply voltage (AVDD/AVSS) or the voltage level on the (VREF+/VREF-) pin. The A/D converter has a unique feature of being able to operate while the device is in Sleep mode with RC oscillator selection.
The ADCON1, ADCON2 and ADCON3 registers control the operation of the A/D module. The ADCHS register selects the input channels to be converted. The ADPCFG register configures the port pins as analog inputs or as digital I/O. The ADCSSL register selects inputs for scanning. Note: The SSRC<2:0>, ASAM, SMPI<3:0>, BUFM and ALTS bits, as well as the ADCON3 and ADCSSL registers, must not be written to while ADON = 1. This would lead to indeterminate results.
The block diagram of the 12-bit A/D module is shown in Figure 19-1.
FIGURE 19-1:
VREF+
12-BIT A/D FUNCTIONAL BLOCK DIAGRAM
AVDD AVSS
VREF0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 CH0G CH0R S/H CH0 Input Switches Sample Sample/Sequence Control 16-word, 12-bit Dual Port Buffer Data Format 12-bit SAR Conversion Logic DAC Comparator
AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8 AN9 AN10 AN11 AN12 AN13 AN14 AN15
Input Mux Control
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 127
Bus Interface
DSPIC30F5011/5013
19.1 A/D Result Buffer 19.3
The module contains a 16-word dual port read only buffer, called ADCBUF0...ADCBUFF, to buffer the A/D results. The RAM is 12 bits wide but the data obtained is represented in one of four different 16-bit data formats. The contents of the sixteen A/D Conversion Result Buffer registers, ADCBUF0 through ADCBUFF, cannot be written by user software.
Selecting the Conversion Sequence
Several groups of control bits select the sequence in which the A/D connects inputs to the sample/hold channel, converts a channel, writes the buffer memory and generates interrupts. The sequence is controlled by the sampling clocks. The SMPI bits select the number of acquisition/ conversion sequences that would be performed before an interrupt occurs. This can vary from 1 sample per interrupt to 16 samples per interrupt. The BUFM bit will split the 16-word results buffer into two 8-word groups. Writing to the 8-word buffers will be alternated on each interrupt event. Use of the BUFM bit will depend on how much time is available for the moving of the buffers after the interrupt. If the processor can quickly unload a full buffer within the time it takes to acquire and convert one channel, the BUFM bit can be `0' and up to 16 conversions (corresponding to the 16 input channels) may be done per interrupt. The processor will have one acquisition and conversion time to move the sixteen conversions. If the processor cannot unload the buffer within the acquisition and conversion time, the BUFM bit should be `1'. For example, if SMPI<3:0> (ADCON2<5:2>) = 0111, then eight conversions will be loaded into 1/2 of the buffer, following which an interrupt occurs. The next eight conversions will be loaded into the other 1/2 of the buffer. The processor will have the entire time between interrupts to move the eight conversions. The ALTS bit can be used to alternate the inputs selected during the sampling sequence. The input multiplexer has two sets of sample inputs: MUX A and MUX B. If the ALTS bit is `0', only the MUX A inputs are selected for sampling. If the ALTS bit is `1' and SMPI<3:0> = 0000 on the first sample/convert sequence, the MUX A inputs are selected and on the next acquire/convert sequence, the MUX B inputs are selected. The CSCNA bit (ADCON2<10>) will allow the multiplexer input to be alternately scanned across a selected number of analog inputs for the MUX A group. The inputs are selected by the ADCSSL register. If a particular bit in the ADCSSL register is `1', the corresponding input is selected. The inputs are always scanned from lower to higher numbered inputs, starting after each interrupt. If the number of inputs selected is greater than the number of samples taken per interrupt, the higher numbered inputs are unused.
19.2
Conversion Operation
After the A/D module has been configured, the sample acquisition is started by setting the SAMP bit. Various sources, such as a programmable bit, timer time-outs and external events, will terminate acquisition and start a conversion. When the A/D conversion is complete, the result is loaded into ADCBUF0...ADCBUFF, and the DONE bit and the A/D interrupt flag ADIF are set after the number of samples specified by the SMPI bit. The ADC module can be configured for different interrupt rates as described in Section 19.3. The following steps should be followed for doing an A/D conversion: 1. Configure the A/D module: * Configure analog pins, voltage reference and digital I/O * Select A/D input channels * Select A/D conversion clock * Select A/D conversion trigger * Turn on A/D module Configure A/D interrupt (if required): * Clear ADIF bit * Select A/D interrupt priority Start sampling. Wait the required acquisition time. Trigger acquisition end, start conversion: Wait for A/D conversion to complete, by either: * Waiting for the A/D interrupt, or * Waiting for the DONE bit to get set. Read A/D result buffer, clear ADIF if required.
2.
3. 4. 5. 6.
7.
DS70116C-page 128
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
19.4 Programming the Start of Conversion Trigger
Example 19-1 shows a sample calculation for the ADCS<5:0> bits, assuming a device operating speed of 30 MIPS.
The conversion trigger will terminate acquisition and start the requested conversions. The SSRC<2:0> bits select the source of the conversion trigger. The SSRC bits provide for up to 4 alternate sources of conversion trigger. When SSRC<2:0> = 000, the conversion trigger is under software control. Clearing the SAMP bit will cause the conversion trigger. When SSRC<2:0> = 111 (Auto-Start mode), the conversion trigger is under A/D clock control. The SAMC bits select the number of A/D clocks between the start of acquisition and the start of conversion. This provides the fastest conversion rates on multiple channels. SAMC must always be at least 1 clock cycle. Other trigger sources can come from timer modules or external interrupts.
EXAMPLE 19-1:
A/D CONVERSION CLOCK CALCULATION
Minimum TAD = 667 nsec TCY = 33 nsec (30 MIPS) ADCS<5:0> = 2 TAD -1 TCY 667 nsec =2* -1 33 nsec = 39.4
Therefore, Set ADCS<5:0> = 40 Actual TAD = TCY (ADCS<5:0> + 1) 2 33 nsec = (40 + 1) 2 = 677 nsec
19.5
Aborting a Conversion
Clearing the ADON bit during a conversion will abort the current conversion and stop the sampling sequencing until the next sampling trigger. The ADCBUF will not be updated with the partially completed A/D conversion sample. That is, the ADCBUF will continue to contain the value of the last completed conversion (or the last value written to the ADCBUF register). If the clearing of the ADON bit coincides with an autostart, the clearing has a higher priority and a new conversion will not start. After the A/D conversion is aborted, a 2 TAD wait is required before the next sampling may be started by setting the SAMP bit.
19.6
Selecting the A/D Conversion Clock
The A/D conversion requires 15 TAD. The source of the A/D conversion clock is software selected, using a six-bit counter. There are 64 possible options for TAD.
EQUATION 19-1:
A/D CONVERSION CLOCK
TAD = TCY * (0.5*(ADCS<5:0> + 1)) The internal RC oscillator is selected by setting the ADRC bit. For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 667 nsec (for VDD = 5V). Refer to the Electrical Specifications section for minimum TAD under other operating conditions.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 129
DSPIC30F5011/5013
19.7 A/D Acquisition Requirements
The analog input model of the 12-bit A/D converter is shown in Figure 18-11. The total sampling time for the A/D is a function of the internal amplifier settling time and the holding capacitor charge time. For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The source impedance (RS), the interconnect impedance (RIC), and the internal sampling switch (RSS) impedance combine to directly affect the time required to charge the capacitor CHOLD. The combined impedance of the analog sources must therefore be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the A/D converter, the maximum recommended source impedance, RS, is 2.5 k. After the analog input channel is selected (changed), this sampling function must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.
FIGURE 19-2:
12-BIT A/D CONVERTER ANALOG INPUT MODEL
VDD VT = 0.6V RIC 250 Sampling Switch RSS CHOLD = DAC capacitance = 18 pF VSS Legend: CPIN = input capacitance = threshold voltage VT I leakage = leakage current at the pin due to various junctions = interconnect resistance RIC = sampling switch resistance RSS = sample/hold capacitance (from DAC) CHOLD RSS 3 k
Rs
ANx
VA
CPIN VT = 0.6V
I leakage 500 nA
Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs 2.5 k.
DS70116C-page 130
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
19.8 Module Power-down Modes
The module has 2 internal Power modes. When the ADON bit is `1', the module is in Active mode; it is fully powered and functional. When ADON is `0', the module is in Off mode. The digital and analog portions of the circuit are disabled for maximum current savings. In order to return to the Active mode from Off mode, the user must wait for the ADC circuitry to stabilize. If the A/D interrupt is enabled, the device will wake-up from Sleep. If the A/D interrupt is not enabled, the A/ D module will then be turned off, although the ADON bit will remain set.
19.9.2
A/D OPERATION DURING CPU IDLE MODE
The ADSIDL bit selects if the module will stop on Idle or continue on Idle. If ADSIDL = 0, the module will continue operation on assertion of Idle mode. If ADSIDL = 1, the module will stop on Idle.
19.9
19.9.1
A/D Operation During CPU Sleep and Idle Modes
A/D OPERATION DURING CPU SLEEP MODE
19.10 Effects of a Reset
A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off, and any conversion and sampling sequence is aborted. The values that are in the ADCBUF registers are not modified. The A/D Result register will contain unknown data after a Power-on Reset.
When the device enters Sleep mode, all clock sources to the module are shutdown and stay at logic `0'. If Sleep occurs in the middle of a conversion, the conversion is aborted. The converter will not continue with a partially completed conversion on exit from Sleep mode. Register contents are not affected by the device entering or leaving Sleep mode. The A/D module can operate during Sleep mode if the A/D clock source is set to RC (ADRC = 1). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed which eliminates all digital switching noise from the conversion. When the conversion is complete, the CONV bit will be cleared and the result loaded into the ADCBUF register.
19.11 Output Formats
The A/D result is 12 bits wide. The data buffer RAM is also 12 bits wide. The 12-bit data can be read in one of four different formats. The FORM<1:0> bits select the format. Each of the output formats translates to a 16-bit result on the data bus. Write data will always be in right justified (integer) format.
FIGURE 19-3:
RAM Contents: Read to Bus:
A/D OUTPUT DATA FORMATS
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00
Signed Fractional
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00
0
0
0
0
Fractional
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00
0
0
0
0
Signed Integer
d11 d11 d11 d11 d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00
Integer
0
0
0
0
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 131
DSPIC30F5011/5013
19.12 Configuring Analog Port Pins
The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted. The A/D operation is independent of the state of the CH0SA<3:0>/CH0SB<3:0> bits and the TRIS bits. When reading the Port register, all pins configured as analog input channels will read as cleared. Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.
19.13 Connection Considerations
The analog inputs have diodes to VDD and VSS as ESD protection. This requires that the analog input be between VDD and VSS. If the input voltage exceeds this range by greater than 0.3V (either direction), one of the diodes becomes forward biased and it may damage the device if the input current specification is exceeded. An external RC filter is sometimes added for antialiasing of the input signal. The R component should be selected to ensure that the sampling time requirements are satisfied. Any external components connected (via high impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.
DS70116C-page 132
Preliminary
2004 Microchip Technology Inc.
TABLE 19-1:
Bit 13 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ADSIDL -- -- -- PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 CSSL11 CSSL10 CSSL9 CSSL8 CSSL7 CH0NB CH0SB<3:0> -- -- SAMC<4:0> ADRC -- -- CH0NA PCFG4 CSSL5 CSSL4 -- CSCNA -- -- BUFS -- -- -- -- FORM<1:0> SSRC<2:0> -- ADC Data Buffer 15 -- -- SMPI<3:0> ADCS<5:0> CH0SA<3:0> PCFG3 PCFG2 PCFG1 CSSL3 CSSL2 CSSL1 PCFG0 CSSL0 ASAM SAMP BUFM DONE ALTS -- ADC Data Buffer 14 -- ADC Data Buffer 13 -- ADC Data Buffer 12 -- ADC Data Buffer 11 -- ADC Data Buffer 10 -- ADC Data Buffer 9 -- ADC Data Buffer 8 -- ADC Data Buffer 7 -- ADC Data Buffer 6 -- ADC Data Buffer 5 -- ADC Data Buffer 4 -- ADC Data Buffer 3 -- ADC Data Buffer 2 -- ADC Data Buffer 1 -- ADC Data Buffer 0 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
A/D CONVERTER REGISTER MAP
SFR Name
Addr.
Bit 15
Bit 14
ADCBUF0
0280
--
--
0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 uuuu uuuu uuuu 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
ADCBUF1
0282
--
--
ADCBUF2
0284
--
--
ADCBUF3
0286
--
--
ADCBUF4
0288
--
--
ADCBUF5
028A
--
--
2004 Microchip Technology Inc.
PCFG6 PCFG5 CSSL6 CSSL12
ADCBUF6
028C
--
--
ADCBUF7
028E
--
--
ADCBUF8
0290
--
--
ADCBUF9
0292
--
--
ADCBUFA
0294
--
--
ADCBUFB
0296
--
--
ADCBUFC 0298
--
--
ADCBUFD 029A
--
--
ADCBUFE 029C
--
--
ADCBUFF
029E
--
--
ADCON1
02A0
ADON
--
ADCON2
02A2
VCFG<2:0>
Preliminary
ADCON3
02A4
--
--
ADCHS
02A6
--
--
ADPCFG
02A8
PCFG15 PCFG14 PCFG13 PCFG12
ADCSSL
02AA
CSSL15 CSSL14 CSSL13
Legend:
u = uninitialized bit
DSPIC30F5011/5013
DS70116C-page 133
DSPIC30F5011/5013
NOTES:
DS70116C-page 134
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
20.0 SYSTEM INTEGRATION
20.1 Oscillator System Overview
There are several features intended to maximize system reliability, minimize cost through elimination of external components, provide Power Saving Operating modes and offer code protection: * Oscillator Selection * Reset - Power-on Reset (POR) - Power-up Timer (PWRT) - Oscillator Start-up Timer (OST) - Programmable Brown-out Reset (BOR) * Watchdog Timer (WDT) * Power Saving Modes (Sleep and Idle) * Code Protection * Unit ID Locations * In-Circuit Serial Programming (ICSP) dsPIC30F devices have a Watchdog Timer which is permanently enabled via the configuration bits or can be software controlled. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT) which provides a delay on power-up only, designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low current Power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit a wide variety of applications. In the Idle mode, the clock sources are still active but the CPU is shut-off. The RC oscillator option saves system cost while the LP crystal option saves power. The dsPIC30F oscillator system has the following modules and features: * Various external and internal oscillator options as clock sources * An on-chip PLL to boost internal operating frequency * A clock switching mechanism between various clock sources * Programmable clock postscaler for system power savings * A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures * Clock Control register (OSCCON) * Configuration bits for main oscillator selection Configuration bits determine the clock source upon Power-on Reset (POR) and Brown-out Reset (BOR). Thereafter, the clock source can be changed between permissible clock sources. The OSCCON register controls the clock switching and reflects system clock related status bits. Table 20-1 provides a summary of the dsPIC30F Oscillator Operating modes. A simplified diagram of the oscillator system is shown in Figure 20-1.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 135
DSPIC30F5011/5013
TABLE 20-1: OSCILLATOR OPERATING MODES
Description 200 kHz-4 MHz crystal on OSC1:OSC2. 4 MHz-10 MHz crystal on OSC1:OSC2. 4 MHz-10 MHz crystal on OSC1:OSC2, 4x PLL enabled. 4 MHz-10 MHz crystal on OSC1:OSC2, 8x PLL enabled. 4 MHz-10 MHz crystal on OSC1:OSC2, 16x PLL enabled(1). 32 kHz crystal on SOSCO:SOSCI(2). 10 MHz-25 MHz crystal. External clock input (0-40 MHz). External clock input (0-40 MHz), OSC2 pin is I/O. External clock input (0-40 MHz), OSC2 pin is I/O, 4x PLL enabled(1). External clock input (0-40 MHz), OSC2 pin is I/O, 8x PLL enabled(1). External clock input (0-40 MHz), OSC2 pin is I/O, 16x PLL enabled(1). External RC oscillator, OSC2 pin is FOSC/4 output(3). External RC oscillator, OSC2 pin is I/O(3). 8 MHz internal RC oscillator. 8 MHz Internal RC oscillator, 4x PLL enabled. 8 MHz Internal RC oscillator, 8x PLL enabled. 7.5 MHz Internal RC oscillator, 16x PLL enabled. 512 kHz internal RC oscillator. dsPIC30F maximum operating frequency of 120 MHz must be met. LP oscillator can be conveniently shared as system clock, as well as real-time clock for Timer1. Requires external R and C. Frequency operation up to 4 MHz. Oscillator Mode XTL XT XT w/ PLL 4x XT w/ PLL 8x XT w/ PLL 16x LP HS EC ECIO EC w/ PLL 4x EC w/ PLL 8x EC w/ PLL 16x ERC ERCIO FRC FRC w/ PLL 4x FRC w/ PLL 8x FRC w/ PLL 16x LPRC Note 1: 2: 3:
DS70116C-page 136
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 20-1: OSCILLATOR SYSTEM BLOCK DIAGRAM
Oscillator Configuration bits PWRSAV Instruction Wake-up Request OSC1 OSC2 FPLL Primary Oscillator PLL x4, x8, x16 PLL Lock Primary Osc NOSC<1:0> Primary Oscillator Stability Detector OSWEN COSC<1:0>
POR Done
Oscillator Start-up Timer Secondary Osc
Clock Switching and Control Block Programmable Clock Divider System Clock 2 POST<1:0>
SOSCO SOSCI 32 kHz LP Oscillator
Secondary Oscillator Stability Detector
Internal Fast RC Oscillator (FRC)
Internal Low Power RC Oscillator (LPRC)
LPRC
FCKSM<1:0> 2
Fail-Safe Clock Monitor (FSCM)
CF Oscillator Trap To Timer1
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 137
DSPIC30F5011/5013
20.2
20.2.1
Oscillator Configurations
INITIAL CLOCK SOURCE SELECTION
While coming out of Power-on Reset or Brown-out Reset, the device selects its clock source based on: a) b) FOS<1:0> configuration bits that select one of four oscillator groups, and FPR<3:0> configuration bits that select one of 13 oscillator choices within the primary group.
The selection is as shown in Table 20-2.
TABLE 20-2:
CONFIGURATION BIT VALUES FOR CLOCK SELECTION
Oscillator Source FOS1 FOS0 FPR3 FPR2 FPR1 FPR0 OSC2 Function
Oscillator Mode
1 1 1 0 1 1 CLKO EC Primary ECIO Primary 1 1 1 1 0 0 I/O EC w/ PLL 4x Primary 1 1 1 1 0 1 I/O EC w/ PLL 8x Primary 1 1 1 1 1 0 I/O EC w/ PLL 16x Primary 1 1 1 1 1 1 I/O ERC Primary 1 1 1 0 0 1 CLKO ERCIO Primary 1 1 1 0 0 0 I/O XT Primary 1 1 0 1 0 0 OSC2 XT w/ PLL 4x Primary 1 1 0 1 0 1 OSC2 XT w/ PLL 8x Primary 1 1 0 1 1 0 OSC2 XT w/ PLL 16x Primary 1 1 0 1 1 1 OSC2 XTL Primary 1 1 0 0 0 0 OSC2 FRC w/ PLL 4x Internal FRC 1 1 0 0 0 1 I/O FRC w/ PLL 8x Internal FRC 1 1 1 0 1 0 I/O FRC w/ PLL 16x Internal FRC 1 1 0 0 1 1 I/O HS Primary 1 1 0 0 1 0 OSC2 LP Secondary 0 0 -- -- -- -- (Notes 1, 2) FRC Internal FRC 0 1 x x x x (Notes 1, 2) LPRC Internal LPRC 1 0 -- -- -- -- (Notes 1, 2) Note 1: OSC2 pin function is determined by the Primary Oscillator mode selection (FPR<3:0>). 2: OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is selected at all times.
20.2.2
OSCILLATOR START-UP TIMER (OST)
20.2.3
1. 2.
LP OSCILLATOR CONTROL
Enabling the LP oscillator is controlled with two elements: The current oscillator group bits COSC<1:0>. The LPOSCEN bit (OSCON register).
In order to ensure that a crystal oscillator (or ceramic resonator) has started and stabilized, an Oscillator Start-up Timer is included. It is a simple 10-bit counter that counts 1024 TOSC cycles before releasing the oscillator clock to the rest of the system. The time-out period is designated as TOST. The TOST time is involved every time the oscillator has to restart (i.e., on POR, BOR and wake-up from Sleep). The Oscillator Start-up Timer is applied to the LP oscillator, XT, XTL, and HS modes (upon wake-up from Sleep, POR and BOR) for the primary oscillator.
The LP oscillator is on (even during Sleep mode) if LPOSCEN = 1. The LP oscillator is the device clock if: * COSC<1:0> = 00 (LP selected as main oscillator) and * LPOSCEN = 1 Keeping the LP oscillator on at all times allows for a fast switch to the 32 kHz system clock for lower power operation. Returning to the faster main oscillator will still require a start-up time
DS70116C-page 138
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
20.2.4 PHASE LOCKED LOOP (PLL) TABLE 20-4:
TUN<3:0> Bits 0111 0110 0101 0100 0011 0010 0001 0000 1111 1110 1101 1100 1011 1010 1001 1000
FRC TUNING
FRC Frequency + 10.5% + 9.0% + 7.5% + 6.0% + 4.5% + 3.0% + 1.5% Center Frequency (oscillator is running at calibrated frequency) - 1.5% - 3.0% - 4.5% - 6.0% - 7.5% - 9.0% - 10.5% - 12.0%
The PLL multiplies the clock which is generated by the primary oscillator or Fast RC oscillator. The PLL is selectable to have either gains of x4, x8, and x16. Input and output frequency ranges are summarized in Table 20-3.
TABLE 20-3:
FIN 4 MHz-10 MHz 4 MHz-10 MHz
PLL FREQUENCY RANGE
PLL Multiplier x4 x8 x16 FOUT 16 MHz-40 MHz 32 MHz-80 MHz 64 MHz-120 MHz
4 MHz-7.5 MHz
The PLL features a lock output which is asserted when the PLL enters a phase locked state. Should the loop fall out of lock (e.g., due to noise), the lock signal will be rescinded. The state of this signal is reflected in the read only LOCK bit in the OSCCON register.
20.2.5
FAST RC OSCILLATOR (FRC)
The FRC oscillator is a fast (8 MHz nominal) internal RC oscillator. This oscillator is intended to provide reasonable device operating speeds without the use of an external crystal, ceramic resonator, or RC network. The FRC oscillator can be used with the PLL to obtain higher clock frequencies. The dsPIC30F operates from the FRC oscillator whenever the current oscillator selection control bits in the OSCCON register (OSCCON<13:12>) are set to `01'. The four bit field specified by TUN<3:0> (OSCON <15:14> and OSCON<11:10>) allows the user to tune the internal fast RC oscillator (nominal 8.0 MHz). The user can tune the FRC oscillator within a range of +10.5% (840 kHz) and -12% (960 kHz) in steps of 1.50% around the factory-calibrated setting, see Table 20-4. If OSCCON<13:12> are set to `11' and FPR<3:0> are set to `0001', `1010' or `0011', then a PLL multiplier of 4, 8 or 16 (respectively) is applied. Note: When a 16x PLL is used, the FRC frequency must not be tuned to a frequency greater than 7.5 MHz.
20.2.6
LOW POWER RC OSCILLATOR (LPRC)
The LPRC oscillator is a component of the Watchdog Timer (WDT) and oscillates at a nominal frequency of 512 kHz. The LPRC oscillator is the clock source for the Power-up Timer (PWRT) circuit, WDT, and clock monitor circuits. It may also be used to provide a low frequency clock source option for applications where power consumption is critical and timing accuracy is not required The LPRC oscillator is always enabled at a Power-on Reset because it is the clock source for the PWRT. After the PWRT expires, the LPRC oscillator will remain on if one of the following is true: * The Fail-Safe Clock Monitor is enabled * The WDT is enabled * The LPRC oscillator is selected as the system clock via the COSC<1:0> control bits in the OSCCON register If one of the above conditions is not true, the LPRC will shut-off after the PWRT expires. Note 1: OSC2 pin function is determined by the Primary Oscillator mode selection (FPR<3:0>). 2: OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is selected at all times.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 139
DSPIC30F5011/5013
20.2.7 FAIL-SAFE CLOCK MONITOR
The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by appropriately programming the FCKSM configuration bits (clock switch and monitor selection bits) in the FOSC Device Configuration register. If the FSCM function is enabled, the LPRC internal oscillator will run at all times (except during Sleep mode) and will not be subject to control by the SWDTEN bit. In the event of an oscillator failure, the FSCM will generate a clock failure trap event and will switch the system clock over to the FRC oscillator. The user will then have the option to either attempt to restart the oscillator or execute a controlled shutdown. The user may decide to treat the trap as a warm Reset by simply loading the Reset address into the oscillator fail trap vector. In this event, the CF (Clock Fail) status bit (OSCCON<3>) is also set whenever a clock failure is recognized. In the event of a clock failure, the WDT is unaffected and continues to run on the LPRC clock. If the oscillator has a very slow start-up time coming out of POR, BOR or Sleep, it is possible that the PWRT timer will expire before the oscillator has started. In such cases, the FSCM will be activated and the FSCM will initiate a clock failure trap, and the COSC<1:0> bits are loaded with FRC oscillator selection. This will effectively shut-off the original oscillator that was trying to start. The user may detect this situation and restart the oscillator in the clock fail trap ISR. Upon a clock failure detection, the FSCM module will initiate a clock switch to the FRC oscillator as follows: 1. 2. 3. The COSC bits (OSCCON<13:12>) are loaded with the FRC oscillator selection value. CF bit is set (OSCCON<3>). OSWEN control bit (OSCCON<0>) is cleared. The OSCCON register holds the control and status bits related to clock switching. * COSC<1:0>: Read only status bits always reflect the current oscillator group in effect. * NOSC<1:0>: Control bits which are written to indicate the new oscillator group of choice. - On POR and BOR, COSC<1:0> and NOSC<1:0> are both loaded with the configuration bit values FOS<1:0>. * LOCK: The LOCK status bit indicates a PLL lock. * CF: Read only status bit indicating if a clock fail detect has occurred. * OSWEN: Control bit changes from a `0' to a `1' when a clock transition sequence is initiated. Clearing the OSWEN control bit will abort a clock transition in progress (used for hang-up situations). If configuration bits FCKSM<1:0> = 1x, then the clock switching and Fail-Safe Clock monitoring functions are disabled. This is the default configuration bit setting. If clock switching is disabled, then the FOS<1:0> and FPR<3:0> bits directly control the oscillator selection and the COSC<1:0> bits do not control the clock selection. However, these bits will reflect the clock source selection. Note: The application should not attempt to switch to a clock of frequency lower than 100 KHz when the fail-safe clock monitor is enabled. If such clock switching is performed, the device may generate an oscillator fail trap and switch to the Fast RC oscillator.
20.2.8
PROTECTION AGAINST ACCIDENTAL WRITES TO OSCCON
For the purpose of clock switching, the clock sources are sectioned into four groups: 1. 2. 3. 4. Primary Secondary Internal FRC Internal LPRC
A write to the OSCCON register is intentionally made difficult because it controls clock switching and clock scaling. To write to the OSCCON low byte, the following code sequence must be executed without any other instructions in between: Byte Write "0x46" to OSCCON low Byte Write "0x57" to OSCCON low
The user can switch between these functional groups but cannot switch between options within a group. If the primary group is selected, then the choice within the group is always determined by the FPR<3:0> configuration bits.
Byte write is allowed for one instruction cycle. Write the desired value or use bit manipulation instruction.
To write to the OSCCON high byte, the following instructions must be executed without any other instructions in between: Byte Write "0x78" to OSCCON high Byte Write "0x9A" to OSCCON high
Byte write is allowed for one instruction cycle. Write the desired value or use bit manipulation instruction.
DS70116C-page 140
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
20.3 Reset
The dsPIC30F differentiates between various kinds of Reset: a) b) c) d) e) f) g) h) Power-on Reset (POR) MCLR Reset during normal operation MCLR Reset during Sleep Watchdog Timer (WDT) Reset (during normal operation) Programmable Brown-out Reset (BOR) RESET Instruction Reset caused by trap lockup (TRAPR) Reset caused by illegal opcode or by using an uninitialized W register as an address pointer (IOPUWR) Different registers are affected in different ways by various Reset conditions. Most registers are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. Status bits from the RCON register are set or cleared differently in different Reset situations, as indicated in Table 20-5. These bits are used in software to determine the nature of the Reset. A block diagram of the On-Chip Reset Circuit is shown in Figure 20-2. A MCLR noise filter is provided in the MCLR Reset path. The filter detects and ignores small pulses. Internally generated Resets do not drive MCLR pin low.
FIGURE 20-2:
RESET Instruction
RESET SYSTEM BLOCK DIAGRAM
Digital Glitch Filter MCLR Sleep or Idle WDT Module VDD Rise Detect VDD Brown-out Reset BOR BOREN R Trap Conflict Illegal Opcode/ Uninitialized W Register Q SYSRST POR
S
20.3.1
POR: POWER-ON RESET
A power-on event will generate an internal POR pulse when a VDD rise is detected. The Reset pulse will occur at the POR circuit threshold voltage (VPOR) which is nominally 1.85V. The device supply voltage characteristics must meet specified starting voltage and rise rate requirements. The POR pulse will reset a POR timer and place the device in the Reset state. The POR also selects the device clock source identified by the oscillator configuration fuses.
The POR circuit inserts a small delay, TPOR, which is nominally 10 s and ensures that the device bias circuits are stable. Furthermore, a user selected powerup time-out (TPWRT) is applied. The TPWRT parameter is based on device configuration bits and can be 0 ms (no delay), 4 ms, 16 ms, or 64 ms. The total delay is at device power-up, TPOR + TPWRT. When these delays have expired, SYSRST will be negated on the next leading edge of the Q1 clock and the PC will jump to the Reset vector. The timing for the SYSRST signal is shown in Figure 20-3 through Figure 20-5.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 141
DSPIC30F5011/5013
FIGURE 20-3:
VDD MCLR INTERNAL POR TOST OST TIME-OUT TPWRT PWRT TIME-OUT
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)
INTERNAL Reset
FIGURE 20-4:
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1
VDD MCLR INTERNAL POR
TOST OST TIME-OUT TPWRT PWRT TIME-OUT
INTERNAL Reset
FIGURE 20-5:
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2
VDD MCLR INTERNAL POR TOST OST TIME-OUT TPWRT
PWRT TIME-OUT INTERNAL Reset
DS70116C-page 142
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
20.3.1.1 POR with Long Crystal Start-up Time (with FSCM Enabled)
The oscillator start-up circuitry is not linked to the POR circuitry. Some crystal circuits (especially low frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after the POR timer and the PWRT have expired: * The oscillator circuit has not begun to oscillate. * The Oscillator Start-up Timer has not expired (if a crystal oscillator is used). * The PLL has not achieved a LOCK (if PLL is used). If the FSCM is enabled and one of the above conditions is true, then a clock failure trap will occur. The device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the trap ISR. A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source based on the device configuration bit values (FOS<1:0> and FPR<3:0>). Furthermore, if an Oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock will be held until the LOCK bit (OSCCON<5>) is `1'. Concurrently, the POR time-out (TPOR) and the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 s is applied. The total delay in this case is (TPOR + TFSCM). The BOR status bit (RCON<1>) will be set to indicate that a BOR has occurred. The BOR circuit, if enabled, will continue to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage.
20.3.1.2
Operating without FSCM and PWRT
FIGURE 20-6:
If the FSCM is disabled and the Power-up Timer (PWRT) is also disabled, then the device will exit rapidly from Reset on power-up. If the clock source is FRC, LPRC, EXTRC or EC, it will be active immediately. If the FSCM is disabled and the system clock has not started, the device will be in a frozen state at the Reset vector until the system clock starts. From the user's perspective, the device will appear to be in Reset until a system clock is available.
EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)
VDD
D
R R1 C MCLR dsPIC30F
Note 1:
20.3.2
BOR: PROGRAMMABLE BROWN-OUT RESET
2:
The BOR (Brown-out Reset) module is based on an internal voltage reference circuit. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on). The BOR module allows selection of one of the following voltage trip points: * * * * 2.0V 2.7V 4.2V 4.5V Note: The BOR voltage trip points indicated here are nominal values provided for design guidance only. Refer to the Electrical Specifications in the specific device data sheet for BOR voltage limit specifications.
3:
External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down. R should be suitably chosen so as to make sure that the voltage drop across R does not violate the device's electrical specifications. R1 should be suitably chosen so as to limit any current flowing into MCLR from external capacitor C, in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD), or Electrical Overstress (EOS).
Note:
Dedicated supervisory devices, such as the MCP1XX and MCP8XX, may also be used as an external Power-on Reset circuit.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 143
DSPIC30F5011/5013
Table 20-5 shows the Reset conditions for the RCON register. Since the control bits within the RCON register are R/W, the information in the table implies that all the bits are negated prior to the action specified in the condition column.
TABLE 20-5:
INITIALIZATION CONDITION FOR RCON REGISTER: CASE 1
Program Counter 0x000000 0x000000 0x000000 0x000000 0x000000 0x000000 0x000000 PC + 2 PC + 2
(1)
Condition Power-on Reset Brown-out Reset MCLR Reset during normal operation Software Reset during normal operation MCLR Reset during Sleep MCLR Reset during Idle WDT Time-out Reset WDT Wake-up Interrupt Wake-up from Sleep Clock Failure Trap Trap Reset Illegal Operation Trap Legend: Note 1:
TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0x000004 0x000000 0x000000
u = unchanged, x = unknown, - = unimplemented bit, read as `0' When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.
DS70116C-page 144
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
Table 20-6 shows a second example of the bit conditions for the RCON register. In this case, it is not assumed the user has set/cleared specific bits prior to action specified in the condition column.
TABLE 20-6:
INITIALIZATION CONDITION FOR RCON REGISTER: CASE 2
Program Counter 0x000000 0x000000 0x000000 0x000000 0x000000 0x000000 0x000000 PC + 2 PC + 2
(1)
Condition Power-on Reset Brown-out Reset MCLR Reset during normal operation Software Reset during normal operation MCLR Reset during Sleep MCLR Reset during Idle WDT Time-out Reset WDT Wake-up Interrupt Wake-up from Sleep Clock Failure Trap Trap Reset Illegal Operation Reset Legend: Note 1:
TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR 0 u u u u u u u u u 1 u 0 u u u u u u u u u u 1 0 u 1 0 1 1 0 u u u u u 0 u 0 1 u u 0 u u u u u 0 u 0 0 0 0 1 1 u u u u 0 u 0 0 0 1 0 u u u u u 0 u 0 0 1 0 0 1 1 u u u 1 0 u u u u u u u u u u 1 1 u u u u u u u u u u
0x000004 0x000000 0x000000
u = unchanged, x = unknown, - = unimplemented bit, read as `0' When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 145
DSPIC30F5011/5013
20.4
20.4.1
Watchdog Timer (WDT)
WATCHDOG TIMER OPERATION
20.6
Power Saving Modes
The primary function of the Watchdog Timer (WDT) is to reset the processor in the event of a software malfunction. The WDT is a free-running timer which runs off an on-chip RC oscillator, requiring no external component. Therefore, the WDT timer will continue to operate even if the main processor clock (e.g., the crystal oscillator) fails.
There are two power saving states that can be entered through the execution of a special instruction, PWRSAV; these are Sleep and Idle. The format of the PWRSAV instruction is as follows: PWRSAV , where `parameter' defines Idle or Sleep mode.
20.6.1
SLEEP MODE
20.4.2
ENABLING AND DISABLING THE WDT
In Sleep mode, the clock to the CPU and peripherals is shutdown. If an on-chip oscillator is being used, it is shutdown. The Fail-Safe Clock Monitor is not functional during Sleep since there is no clock to monitor. However, LPRC clock remains active if WDT is operational during Sleep. The brown-out protection circuit and the Low Voltage Detect circuit, if enabled, will remain functional during Sleep. The processor wakes up from Sleep if at least one of the following conditions has occurred: * any interrupt that is individually enabled and meets the required priority level * any Reset (POR, BOR and MCLR) * WDT time-out On waking up from Sleep mode, the processor will restart the same clock that was active prior to entry into Sleep mode. When clock switching is enabled, bits COSC<1:0> will determine the oscillator source that will be used on wake-up. If clock switch is disabled, then there is only one system clock. Note: If a POR or BOR occurred, the selection of the oscillator is based on the FOS<1:0> and FPR<3:0> configuration bits.
The Watchdog Timer can be "Enabled" or "Disabled" only through a configuration bit (FWDTEN) in the Configuration register, FWDT. Setting FWDTEN = 1 enables the Watchdog Timer. The enabling is done when programming the device. By default, after chip erase, FWDTEN bit = 1. Any device programmer capable of programming dsPIC30F devices allows programming of this and other configuration bits. If enabled, the WDT will increment until it overflows or "times out". A WDT time-out will force a device Reset (except during Sleep). To prevent a WDT time-out, the user must clear the Watchdog Timer using a CLRWDT instruction. If a WDT times out during Sleep, the device will wakeup. The WDTO bit in the RCON register will be cleared to indicate a wake-up resulting from a WDT time-out. Setting FWDTEN = 0 allows user software to enable/ disable the Watchdog Timer via the SWDTEN (RCON<5>) control bit.
20.5
Low Voltage Detect
The Low Voltage Detect (LVD) module is used to detect when the VDD of the device drops below a threshold value, VLVD, which is determined by the LVDL<3:0> bits (RCON<11:8>) and is thus user programmable. The internal voltage reference circuitry requires a nominal amount of time to stabilize, and the BGST bit (RCON<13>) indicates when the voltage reference has stabilized. In some devices, the LVD threshold voltage may be applied externally on the LVDIN pin. The LVD module is enabled by setting the LVDEN bit (RCON<12>).
If the clock source is an oscillator, the clock to the device will be held off until OST times out (indicating a stable oscillator). If PLL is used, the system clock is held off until LOCK = 1 (indicating that the PLL is stable). In either case, TPOR, TLOCK and TPWRT delays are applied. If EC, FRC, LPRC or EXTRC oscillators are used, then a delay of TPOR (~ 10 s) is applied. This is the smallest delay possible on wake-up from Sleep. Moreover, if LP oscillator was active during Sleep and LP is the oscillator used on wake-up, then the start-up delay will be equal to TPOR. PWRT delay and OST timer delay are not applied. In order to have -the smallest possible start-up delay when waking up from Sleep, one of these faster wake-up options should be selected before entering Sleep.
DS70116C-page 146
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
Any interrupt that is individually enabled (using the corresponding IE bit) and meets the prevailing priority level will be able to wake-up the processor. The processor will process the interrupt and branch to the ISR. The Sleep status bit in the RCON register is set upon wake-up. Note: In spite of various delays applied (TPOR, TLOCK and TPWRT), the crystal oscillator (and PLL) may not be active at the end of the time-out (e.g., for low frequency crystals). In such cases, if FSCM is enabled, then the device will detect this as a clock failure and process the clock failure trap, the FRC oscillator will be enabled and the user will have to re-enable the crystal oscillator. If FSCM is not enabled, then the device will simply suspend execution of code until the clock is stable and will remain in Sleep until the oscillator clock has started. Any interrupt that is individually enabled (using IE bit) and meets the prevailing priority level will be able to wake-up the processor. The processor will process the interrupt and branch to the ISR. The Idle status bit in the RCON register is set upon wake-up. Any Reset other than POR will set the Idle status bit. On a POR, the Idle bit is cleared. If Watchdog Timer is enabled, then the processor will wake-up from Idle mode upon WDT time-out. The Idle and WDTO status bits are both set. Unlike wake-up from Sleep, there are no time delays involved in wake-up from Idle.
20.7
Device Configuration Registers
All Resets will wake-up the processor from Sleep mode. Any Reset, other than POR, will set the Sleep status bit. In a POR, the Sleep bit is cleared. If the Watchdog Timer is enabled, then the processor will wake-up from Sleep mode upon WDT time-out. The Sleep and WDTO status bits are both set.
The configuration bits in each device configuration register specify some of the Device modes and are programmed by a device programmer, or by using the In-Circuit Serial ProgrammingTM (ICSPTM) feature of the device. Each device configuration register is a 24-bit register, but only the lower 16 bits of each register are used to hold configuration data. There are four device configuration registers available to the user: 1. 2. 3. 4. FOSC (0xF80000): Oscillator Configuration Register FWDT (0xF80002): Watchdog Timer Configuration Register FBORPOR (0xF80004): BOR and POR Configuration Register FGS (0xF8000A): General Code Segment Configuration Register
20.6.2
IDLE MODE
In Idle mode, the clock to the CPU is shutdown while peripherals keep running. Unlike Sleep mode, the clock source remains active. Several peripherals have a control bit in each module that allows them to operate during Idle. LPRC Fail-Safe Clock remains active if clock failure detect is enabled. The processor wakes up from Idle if at least one of the following conditions has occurred: * any interrupt that is individually enabled (IE bit is `1') and meets the required priority level * any Reset (POR, BOR, MCLR) * WDT time-out Upon wake-up from Idle mode, the clock is re-applied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction.
The placement of the configuration bits is automatically handled when you select the device in your device programmer. The desired state of the configuration bits may be specified in the source code (dependent on the language tool used), or through the programming interface. After the device has been programmed, the application software may read the configuration bit values through the table read instructions. For additional information, please refer to the Programming Specifications of the device. Note: If the code protection configuration fuse bits (FGS and FGS) have been programmed, an erase of the entire code-protected device is only possible at voltages VDD 4.5V.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 147
DSPIC30F5011/5013
20.8 Peripheral Module Disable (PMD) Registers 20.9 In-Circuit Debugger
When MPLAB ICD2 is selected as a Debugger, the InCircuit Debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. When the device has this feature enabled, some of the resources are not available for general use. These resources include the first 80 bytes of Data RAM and two I/O pins. One of four pairs of Debug I/O pins may be selected by the user using configuration options in MPLAB IDE. These pin pairs are named EMUD/EMUC, EMUD1/ EMUC1, EMUD2/EMUC2 and MUD3/EMUC3. In each case, the selected EMUD pin is the Emulation/ Debug Data line, and the EMUC pin is the Emulation/ Debug Clock line. These pins will interface to the MPLAB ICD 2 module available from Microchip. The selected pair of Debug I/O pins is used by MPLAB ICD 2 to send commands and receive responses, as well as to send and receive data. To use the In-Circuit Debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGC, PGD, and the selected EMUDx/EMUCx pin pair. This gives rise to two possibilities: 1. If EMUD/EMUC is selected as the Debug I/O pin pair, then only a 5-pin interface is required, as the EMUD and EMUC pin functions are multiplexed with the PGD and PGC pin functions in all dsPIC30F devices. If EMUD1/EMUC1, EMUD2/EMUC2 or EMUD3/ EMUC3 is selected as the Debug I/O pin pair, then a 7-pin interface is required, as the EMUDx/EMUCx pin functions (x = 1, 2 or 3) are not multiplexed with the PGD and PGC pin functions.
The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral will also be disabled so writes to those registers will have no effect and read values will be invalid. A peripheral module will only be enabled if both the associated bit in the the PMD register is cleared and the peripheral is supported by the specific dsPIC variant. If the peripheral is present in the device, it is enabled in the PMD register by default. Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).
2.
DS70116C-page 148
Preliminary
2004 Microchip Technology Inc.
TABLE 20-7:
Bit 13 LVDEN TUN1 -- SPI2MD SPI1MD OC5MD OC4MD OC3MD OC2MD C2MD C1MD CF -- LPOSCEN OSWEN T1MD -- IC3MD IC2MD IC1MD OC8MD OC7MD OC6MD -- DCIMD I2CMD U2MD U1MD IC4MD TUN0 NOSC<1:0> POST<1:0> LOCK LVDL<3:0> EXTR SWR SWDTEN WDTO SLEEP IDLE BOR POR Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State (Note 1) (Note 2)
SYSTEM INTEGRATION REGISTER MAP
SFR Name
Addr.
Bit 15
Bit 14
RCON COSC<1:0> T3MD IC6MD IC5MD T2MD
0740
TRAPR IOPUWR BGST
OSCCON
0742
TUN3
TUN2
PMD1
0770
T5MD
T4MD
ADCMD 0000 0000 0000 0000 OC1MD 0000 0000 0000 0000
PMD2
0772
IC8MD
IC7MD
2004 Microchip Technology Inc.
Bit 15 FCKSM<1:0> FWDTEN MCLREN -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- BOREN -- -- -- -- -- -- -- -- -- -- -- -- -- -- FOS<1:0> -- -- -- Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 -- Bit 3 Bit 2 Bit 1 FPR<3:0> FWPSB<3:0> BORV<1:0> -- -- -- -- -- -- FPWRT<1:0> GCP FWPSA<1:0>
Note
1: 2:
Reset state depends on type of Reset. Reset state depends on configuration bits.
TABLE 20-8:
DEVICE CONFIGURATION REGISTER MAP
Bit 0
File Name
Addr.
Bits 23-16
FOSC
F80000
--
FWDT
F80002
--
FBORPOR
F80004
--
FGS
F8000A
--
GWRP
Preliminary
DSPIC30F5011/5013
DS70116C-page 149
DSPIC30F5011/5013
NOTES:
DS70116C-page 150
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
21.0 INSTRUCTION SET SUMMARY
Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands: * The W register (with or without an address modifier) or file register (specified by the value of `Ws' or `f') * The bit in the W register or file register (specified by a literal value or indirectly by the contents of register `Wb') The literal instructions that involve data movement may use some of the following operands: * A literal value to be loaded into a W register or file register (specified by the value of `k') * The W register or file register where the literal value is to be loaded (specified by `Wb' or `f') However, literal instructions that involve arithmetic or logical operations use some of the following operands: * The first source operand which is a register `Wb' without any address modifier * The second source operand which is a literal value * The destination of the result (only if not the same as the first source operand) which is typically a register `Wd' with or without an address modifier The MAC class of DSP instructions may use some of the following operands: * The accumulator (A or B) to be used (required operand) * The W registers to be used as the two operands * The X and Y address space pre-fetch operations * The X and Y address space pre-fetch destinations * The accumulator write back destination The other DSP instructions do not involve any multiplication, and may include: * The accumulator to be used (required) * The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier * The amount of shift specified by a W register `Wn' or a literal value The control instructions may use some of the following operands: * A program memory address * The mode of the table read and table write instructions The dsPIC30F instruction set adds many enhancements to the previous PICmicro(R) instruction sets, while maintaining an easy migration from PICmicro instruction sets. Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations. Each single word instruction is a 24-bit word divided into an 8-bit opcode which specifies the instruction type, and one or more operands which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into five basic categories: * * * * * Word or byte-oriented operations Bit-oriented operations Literal operations DSP operations Control operations
Table 21-1 shows the general symbols used in describing the instructions. The dsPIC30F instruction set summary in Table 21-2 lists all the instructions, along with the status flags affected by each instruction. Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands: * The first source operand which is typically a register `Wb' without any address modifier * The second source operand which is typically a register `Ws' with or without an address modifier * The destination of the result which is typically a register `Wd' with or without an address modifier However, word or byte-oriented file register instructions have two operands: * The file register specified by the value `f' * The destination, which could either be the file register `f' or the W0 register, which is denoted as `WREG'
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 151
DSPIC30F5011/5013
All instructions are a single word, except for certain double-word instructions, which were made doubleword instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are `0's. If this second word is executed as an instruction (by itself), it will execute as a NOP. Most single word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and RETURN/RETFIE instructions, which are single word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single word or twoword instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles. Note: For more details on the instruction set, refer to the Programmer's Reference Manual.
TABLE 21-1:
Field #text (text) [text] {} .b .d .S .w Acc AWB bit4 C, DC, N, OV, Z Expr f lit1 lit4 lit5 lit8 lit10 lit14 lit16 lit23 None OA, OB, SA, SB PC Slit10 Slit16 Slit6
SYMBOLS USED IN OPCODE DESCRIPTIONS
Description Means literal defined by "text" Means "content of text" Means "the location addressed by text" Optional field or operation Register bit field Byte mode selection Double-Word mode selection Shadow register select Word mode selection (default) One of two accumulators {A, B} Accumulator write back destination address register {W13, [W13]+=2} 4-bit bit selection field (used in word addressed instructions) {0...15} MCU status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero Absolute address, label or expression (resolved by the linker) File register address {0x0000...0x1FFF} 1-bit unsigned literal {0,1} 4-bit unsigned literal {0...15} 5-bit unsigned literal {0...31} 8-bit unsigned literal {0...255} 10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode 14-bit unsigned literal {0...16384} 16-bit unsigned literal {0...65535} 23-bit unsigned literal {0...8388608}; LSB must be 0 Field does not require an entry, may be blank DSP status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate Program Counter 10-bit signed literal {-512...511} 16-bit signed literal {-32768...32767} 6-bit signed literal {-16...16}
DS70116C-page 152
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 21-1:
Field Wb Wd Wdo Wm,Wn Wm*Wm Wm*Wn Wn Wnd Wns WREG Ws Wso Wx Base W register {W0..W15} Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] } Destination W register { Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] } Dividend, Divisor working register pair (direct addressing) Multiplicand and Multiplier working register pair for Square instructions {W4*W4,W5*W5,W6*W6,W7*W7} Multiplicand and Multiplier working register pair for DSP instructions {W4*W5,W4*W6,W4*W7,W5*W6,W5*W7,W6*W7} One of 16 working registers {W0..W15} One of 16 destination working registers {W0..W15} One of 16 source working registers {W0..W15} W0 (working register used in file register instructions) Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] } Source W register { Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] } X data space pre-fetch address register for DSP instructions {[W8]+=6, [W8]+=4, [W8]+=2, [W8], [W8]-=6, [W8]-=4, [W8]-=2, [W9]+=6, [W9]+=4, [W9]+=2, [W9], [W9]-=6, [W9]-=4, [W9]-=2, [W9+W12],none} X data space pre-fetch destination register for DSP instructions {W4..W7} Y data space pre-fetch address register for DSP instructions {[W10]+=6, [W10]+=4, [W10]+=2, [W10], [W10]-=6, [W10]-=4, [W10]-=2, [W11]+=6, [W11]+=4, [W11]+=2, [W11], [W11]-=6, [W11]-=4, [W11]-=2, [W11+W12], none} Y data space pre-fetch destination register for DSP instructions {W4..W7}
SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)
Description
Wxd Wy
Wyd
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 153
DSPIC30F5011/5013
TABLE 21-2:
Base Instr # 1 Assembly Mnemonic ADD ADD ADD ADD ADD ADD ADD ADD 2 ADDC ADDC ADDC ADDC ADDC ADDC 3 AND AND AND AND AND AND 4 ASR ASR ASR ASR ASR ASR 5 BCLR BCLR BCLR 6 BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA 7 BSET BSET BSET 8 BSW BSW.C BSW.Z
INSTRUCTION SET OVERVIEW
Assembly Syntax Acc f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd Wso,#Slit4,Acc f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd f f,WREG Ws,Wd Wb,Wns,Wnd Wb,#lit5,Wnd f,#bit4 Ws,#bit4 C,Expr GE,Expr GEU,Expr GT,Expr GTU,Expr LE,Expr LEU,Expr LT,Expr LTU,Expr N,Expr NC,Expr NN,Expr NOV,Expr NZ,Expr OA,Expr OB,Expr OV,Expr SA,Expr SB,Expr Expr Z,Expr Wn f,#bit4 Ws,#bit4 Ws,Wb Ws,Wb Description Add Accumulators f = f + WREG WREG = f + WREG Wd = lit10 + Wd Wd = Wb + Ws Wd = Wb + lit5 16-bit Signed Add to Accumulator f = f + WREG + (C) WREG = f + WREG + (C) Wd = lit10 + Wd + (C) Wd = Wb + Ws + (C) Wd = Wb + lit5 + (C) f = f .AND. WREG WREG = f .AND. WREG Wd = lit10 .AND. Wd Wd = Wb .AND. Ws Wd = Wb .AND. lit5 f = Arithmetic Right Shift f WREG = Arithmetic Right Shift f Wd = Arithmetic Right Shift Ws Wnd = Arithmetic Right Shift Wb by Wns Wnd = Arithmetic Right Shift Wb by lit5 Bit Clear f Bit Clear Ws Branch if Carry Branch if greater than or equal Branch if unsigned greater than or equal Branch if greater than Branch if unsigned greater than Branch if less than or equal Branch if unsigned less than or equal Branch if less than Branch if unsigned less than Branch if Negative Branch if Not Carry Branch if Not Negative Branch if Not Overflow Branch if Not Zero Branch if Accumulator A overflow Branch if Accumulator B overflow Branch if Overflow Branch if Accumulator A saturated Branch if Accumulator B saturated Branch Unconditionally Branch if Zero Computed Branch Bit Set f Bit Set Ws Write C bit to Ws Write Z bit to Ws # of # of Words Cycles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 2 1 (2) 2 1 1 1 1 Status Flags Affected OA,OB,SA,SB C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z OA,OB,SA,SB C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z N,Z N,Z N,Z N,Z N,Z C,N,OV,Z C,N,OV,Z C,N,OV,Z N,Z N,Z None None None None None None None None None None None None None None None None None None None None None None None None None None None None
DS70116C-page 154
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 21-2:
Base Instr # 9 Assembly Mnemonic BTG BTG BTG 10 BTSC BTSC BTSC 11 BTSS BTSS BTSS 12 BTST BTST BTST.C BTST.Z BTST.C BTST.Z 13 BTSTS BTSTS BTSTS.C BTSTS.Z 14 CALL CALL CALL 15 CLR CLR CLR CLR CLR 16 17 CLRWDT COM CLRWDT COM COM COM 18 CP CP CP CP 19 CP0 CP0 CP0 20 CP1 CP1 CP1 21 CPB CPB CPB CPB 22 23 24 25 26 27 CPSEQ CPSGT CPSLT CPSNE DAW DEC CPSEQ CPSGT CPSLT CPSNE DAW DEC DEC DEC 28 DEC2 DEC2 DEC2 DEC2 f f,WREG Ws,Wd f Wb,#lit5 Wb,Ws f Ws f Ws f Wb,#lit5 Wb,Ws Wb, Wn Wb, Wn Wb, Wn Wb, Wn Wn f f,WREG Ws,Wd f f,WREG Ws,Wd
INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly Syntax f,#bit4 Ws,#bit4 f,#bit4 Ws,#bit4 f,#bit4 Ws,#bit4 f,#bit4 Ws,#bit4 Ws,#bit4 Ws,Wb Ws,Wb f,#bit4 Ws,#bit4 Ws,#bit4 lit23 Wn f WREG Ws Acc,Wx,Wxd,Wy,Wyd,AWB Bit Toggle f Bit Toggle Ws Bit Test f, Skip if Clear Bit Test Ws, Skip if Clear Bit Test f, Skip if Set Bit Test Ws, Skip if Set Bit Test f Bit Test Ws to C Bit Test Ws to Z Bit Test Ws to C Bit Test Ws to Z Bit Test then Set f Bit Test Ws to C, then Set Bit Test Ws to Z, then Set Call subroutine Call indirect subroutine f = 0x0000 WREG = 0x0000 Ws = 0x0000 Clear Accumulator Clear Watchdog Timer f=f WREG = f Wd = Ws Compare f with WREG Compare Wb with lit5 Compare Wb with Ws (Wb - Ws) Compare f with 0x0000 Compare Ws with 0x0000 Compare f with 0xFFFF Compare Ws with 0xFFFF Compare f with WREG, with Borrow Compare Wb with lit5, with Borrow Compare Wb with Ws, with Borrow (Wb - Ws - C) Compare Wb with Wn, skip if = Compare Wb with Wn, skip if > Compare Wb with Wn, skip if < Compare Wb with Wn, skip if Wn = decimal adjust Wn f = f -1 WREG = f -1 Wd = Ws - 1 f = f -2 WREG = f -2 Wd = Ws - 2 Description # of # of Words Cycles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (2 or 3) 1 (2 or 3) 1 (2 or 3) 1 (2 or 3) 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (2 or 3) 1 (2 or 3) 1 (2 or 3) 1 (2 or 3) 1 1 1 1 1 1 1 Status Flags Affected None None None None None None Z C Z C Z Z C Z None None None None None OA,OB,SA,SB WDTO,Sleep N,Z N,Z N,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z None None None None C C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 155
DSPIC30F5011/5013
TABLE 21-2:
Base Instr # 29 30 Assembly Mnemonic DISI DIV DISI DIV.S DIV.SD DIV.U DIV.UD 31 32 DIVF DO DIVF DO DO 33 34 35 36 37 38 39 ED EDAC EXCH FBCL FF1L FF1R GOTO ED EDAC EXCH FBCL FF1L FF1R GOTO GOTO 40 INC INC INC INC 41 INC2 INC2 INC2 INC2 42 IOR IOR IOR IOR IOR IOR 43 44 45 LAC LNK LSR LAC LNK LSR LSR LSR LSR LSR 46 MAC MAC MAC 47 MOV MOV MOV MOV MOV MOV.b MOV MOV MOV MOV.D MOV.D 48 MOVSAC
INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly Syntax #lit14 Wm,Wn Wm,Wn Wm,Wn Wm,Wn Wm,Wn #lit14,Expr Wn,Expr Wm*Wm,Acc,Wx,Wy,Wxd Wm*Wm,Acc,Wx,Wy,Wxd Wns,Wnd Ws,Wnd Ws,Wnd Ws,Wnd Expr Wn f f,WREG Ws,Wd f f,WREG Ws,Wd f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd Wso,#Slit4,Acc #lit14 f f,WREG Ws,Wd Wb,Wns,Wnd Wb,#lit5,Wnd Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, AWB Wm*Wm,Acc,Wx,Wxd,Wy,Wyd f,Wn f f,WREG #lit16,Wn #lit8,Wn Wn,f Wso,Wdo WREG,f Wns,Wd Ws,Wnd Description Disable Interrupts for k instruction cycles Signed 16/16-bit Integer Divide Signed 32/16-bit Integer Divide Unsigned 16/16-bit Integer Divide Unsigned 32/16-bit Integer Divide Signed 16/16-bit Fractional Divide Do code to PC+Expr, lit14+1 times Do code to PC+Expr, (Wn)+1 times Euclidean Distance (no accumulate) Euclidean Distance Swap Wns with Wnd Find Bit Change from Left (MSb) Side Find First One from Left (MSb) Side Find First One from Right (LSb) Side Go to address Go to indirect f=f+1 WREG = f + 1 Wd = Ws + 1 f=f+2 WREG = f + 2 Wd = Ws + 2 f = f .IOR. WREG WREG = f .IOR. WREG Wd = lit10 .IOR. Wd Wd = Wb .IOR. Ws Wd = Wb .IOR. lit5 Load Accumulator Link frame pointer f = Logical Right Shift f WREG = Logical Right Shift f Wd = Logical Right Shift Ws Wnd = Logical Right Shift Wb by Wns Wnd = Logical Right Shift Wb by lit5 Multiply and Accumulate Square and Accumulate Move f to Wn Move f to f Move f to WREG Move 16-bit literal to Wn Move 8-bit literal to Wn Move Wn to f Move Ws to Wd Move WREG to f Move Double from W(ns):W(ns+1) to Wd Move Double from Ws to W(nd+1):W(nd) Pre-fetch and store accumulator # of # of Words Cycles 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18 18 18 18 18 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 Status Flags Affected None N,Z,C,OV N,Z,C,OV N,Z,C,OV N,Z,C,OV N,Z,C,OV None None OA,OB,OAB, SA,SB,SAB OA,OB,OAB, SA,SB,SAB None C C C None None C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z N,Z N,Z N,Z N,Z N,Z OA,OB,OAB, SA,SB,SAB None C,N,OV,Z C,N,OV,Z C,N,OV,Z N,Z N,Z OA,OB,OAB, SA,SB,SAB OA,OB,OAB, SA,SB,SAB None N,Z N,Z None None None None N,Z None None None
MOVSAC Acc,Wx,Wxd,Wy,Wyd,AWB
DS70116C-page 156
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 21-2:
Base Instr # 49 Assembly Mnemonic MPY MPY MPY 50 51 52 MPY.N MSC MUL MPY.N MSC MUL.SS MUL.SU MUL.US MUL.UU MUL.SU MUL.UU MUL 53 NEG NEG NEG NEG NEG 54 NOP NOP NOPR 55 POP POP POP POP.D POP.S 56 PUSH PUSH PUSH PUSH.D PUSH.S 57 58 PWRSAV RCALL PWRSAV RCALL RCALL 59 REPEAT REPEAT REPEAT 60 61 62 63 64 RESET RETFIE RETLW RETURN RLC RESET RETFIE RETLW RETURN RLC RLC RLC 65 RLNC RLNC RLNC RLNC 66 RRC RRC RRC RRC 67 RRNC RRNC RRNC RRNC f f,WREG Ws,Wd f f,WREG Ws,Wd f f,WREG Ws,Wd f f,WREG Ws,Wd #lit10,Wn #lit1 Expr Wn #lit14 Wn f Wso Wns f Wdo Wnd
INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly Syntax Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, AWB Wb,Ws,Wnd Wb,Ws,Wnd Wb,Ws,Wnd Wb,Ws,Wnd Wb,#lit5,Wnd Wb,#lit5,Wnd f Acc f f,WREG Ws,Wd Description Multiply Wm by Wn to Accumulator Square Wm to Accumulator -(Multiply Wm by Wn) to Accumulator Multiply and Subtract from Accumulator {Wnd+1, Wnd} = signed(Wb) * signed(Ws) {Wnd+1, Wnd} = signed(Wb) * unsigned(Ws) {Wnd+1, Wnd} = unsigned(Wb) * signed(Ws) {Wnd+1, Wnd} = unsigned(Wb) * unsigned(Ws) {Wnd+1, Wnd} = signed(Wb) * unsigned(lit5) {Wnd+1, Wnd} = unsigned(Wb) * unsigned(lit5) W3:W2 = f * WREG Negate Accumulator f=f+1 WREG = f + 1 Wd = Ws + 1 No Operation No Operation Pop f from top-of-stack (TOS) Pop from top-of-stack (TOS) to Wdo Pop from top-of-stack (TOS) to W(nd):W(nd+1) Pop Shadow Registers Push f to top-of-stack (TOS) Push Wso to top-of-stack (TOS) Push W(ns):W(ns+1) to top-of-stack (TOS) Push Shadow Registers Go into Sleep or Idle mode Relative Call Computed Call Repeat Next Instruction lit14+1 times Repeat Next Instruction (Wn)+1 times Software device Reset Return from interrupt Return with literal in Wn Return from Subroutine f = Rotate Left through Carry f WREG = Rotate Left through Carry f Wd = Rotate Left through Carry Ws f = Rotate Left (No Carry) f WREG = Rotate Left (No Carry) f Wd = Rotate Left (No Carry) Ws f = Rotate Right through Carry f WREG = Rotate Right through Carry f Wd = Rotate Right through Carry Ws f = Rotate Right (No Carry) f WREG = Rotate Right (No Carry) f Wd = Rotate Right (No Carry) Ws # of # of Words Cycles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 2 1 1 1 3 (2) 3 (2) 3 (2) 1 1 1 1 1 1 1 1 1 1 1 1 Status Flags Affected OA,OB,OAB, SA,SB,SAB OA,OB,OAB, SA,SB,SAB None OA,OB,OAB, SA,SB,SAB None None None None None None None OA,OB,OAB, SA,SB,SAB C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z None None None None None All None None None None WDTO,Sleep None None None None None None None None C,N,Z C,N,Z C,N,Z N,Z N,Z N,Z C,N,Z C,N,Z C,N,Z N,Z N,Z N,Z
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 157
DSPIC30F5011/5013
TABLE 21-2:
Base Instr # 68 Assembly Mnemonic SAC SAC SAC.R 69 70 SE SETM SE SETM SETM SETM 71 SFTAC SFTAC SFTAC 72 SL SL SL SL SL SL 73 SUB SUB SUB SUB SUB SUB SUB 74 SUBB SUBB SUBB SUBB SUBB SUBB 75 SUBR SUBR SUBR SUBR SUBR 76 SUBBR SUBBR SUBBR SUBBR SUBBR 77 SWAP SWAP.b SWAP 78 79 80 81 82 83 TBLRDH TBLRDL TBLWTH TBLWTL ULNK XOR TBLRDH TBLRDL TBLWTH TBLWTL ULNK XOR XOR XOR XOR XOR 84 ZE ZE f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd Ws,Wnd
INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly Syntax Acc,#Slit4,Wdo Acc,#Slit4,Wdo Ws,Wnd f WREG Ws Acc,Wn Acc,#Slit6 f f,WREG Ws,Wd Wb,Wns,Wnd Wb,#lit5,Wnd Acc f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd f f,WREG Wb,Ws,Wd Wb,#lit5,Wd f f,WREG Wb,Ws,Wd Wb,#lit5,Wd Wn Wn Ws,Wd Ws,Wd Ws,Wd Ws,Wd Description Store Accumulator Store Rounded Accumulator Wnd = sign-extended Ws f = 0xFFFF WREG = 0xFFFF Ws = 0xFFFF Arithmetic Shift Accumulator by (Wn) Arithmetic Shift Accumulator by Slit6 f = Left Shift f WREG = Left Shift f Wd = Left Shift Ws Wnd = Left Shift Wb by Wns Wnd = Left Shift Wb by lit5 Subtract Accumulators f = f - WREG WREG = f - WREG Wn = Wn - lit10 Wd = Wb - Ws Wd = Wb - lit5 f = f - WREG - (C) WREG = f - WREG - (C) Wn = Wn - lit10 - (C) Wd = Wb - Ws - (C) Wd = Wb - lit5 - (C) f = WREG - f WREG = WREG - f Wd = Ws - Wb Wd = lit5 - Wb f = WREG - f - (C) WREG = WREG -f - (C) Wd = Ws - Wb - (C) Wd = lit5 - Wb - (C) Wn = nibble swap Wn Wn = byte swap Wn Read Prog<23:16> to Wd<7:0> Read Prog<15:0> to Wd Write Ws<7:0> to Prog<23:16> Write Ws to Prog<15:0> Unlink frame pointer f = f .XOR. WREG WREG = f .XOR. WREG Wd = lit10 .XOR. Wd Wd = Wb .XOR. Ws Wd = Wb .XOR. lit5 Wnd = Zero-extend Ws # of # of Words Cycles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 Status Flags Affected None None C,N,Z None None None OA,OB,OAB, SA,SB,SAB OA,OB,OAB, SA,SB,SAB C,N,OV,Z C,N,OV,Z C,N,OV,Z N,Z N,Z OA,OB,OAB, SA,SB,SAB C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z None None None None None None None N,Z N,Z N,Z N,Z N,Z C,Z,N
DS70116C-page 158
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
22.0 DEVELOPMENT SUPPORT
22.1
The PICmicro(R) microcontrollers are supported with a full range of hardware and software development tools: * Integrated Development Environment - MPLAB(R) IDE Software * Assemblers/Compilers/Linkers - MPASMTM Assembler - MPLAB C17 and MPLAB C18 C Compilers - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB C30 C Compiler - MPLAB ASM30 Assembler/Linker/Library * Simulators - MPLAB SIM Software Simulator - MPLAB dsPIC30 Software Simulator * Emulators - MPLAB ICE 2000 In-Circuit Emulator - MPLAB ICE 4000 In-Circuit Emulator * In-Circuit Debugger - MPLAB ICD 2 * Device Programmers - PRO MATE(R) II Universal Device Programmer - PICSTART(R) Plus Development Programmer * Low-Cost Demonstration Boards - PICDEMTM 1 Demonstration Board - PICDEM.netTM Demonstration Board - PICDEM 2 Plus Demonstration Board - PICDEM 3 Demonstration Board - PICDEM 4 Demonstration Board - PICDEM 17 Demonstration Board - PICDEM 18R Demonstration Board - PICDEM LIN Demonstration Board - PICDEM USB Demonstration Board * Evaluation Kits - KEELOQ(R) - PICDEM MSC - microID(R) - CAN - PowerSmart(R) - Analog
MPLAB Integrated Development Environment Software
The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows(R) based application that contains: * An interface to debugging tools - simulator - programmer (sold separately) - emulator (sold separately) - in-circuit debugger (sold separately) * A full-featured editor with color coded context * A multiple project manager * Customizable data windows with direct edit of contents * High-level source code debugging * Mouse over variable inspection * Extensive on-line help The MPLAB IDE allows you to: * Edit your source files (either assembly or C) * One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information) * Debug using: - source files (assembly or C) - absolute listing file (mixed assembly and C) - machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.
22.2
MPASM Assembler
The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel(R) standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM assembler features include: * Integration into MPLAB IDE projects * User defined macros to streamline assembly code * Conditional assembly for multi-purpose source files * Directives that allow complete control over the assembly process
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 159
DSPIC30F5011/5013
22.3 MPLAB C17 and MPLAB C18 C Compilers 22.6 MPLAB ASM30 Assembler, Linker and Librarian
The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.
MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: * * * * * * Support for the entire dsPIC30F instruction set Support for fixed-point and floating-point data Command line interface Rich directive set Flexible macro language MPLAB IDE compatibility
22.4
MPLINK Object Linker/ MPLIB Object Librarian
The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB object librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: * Efficient linking of single libraries instead of many smaller files * Enhanced code maintainability by grouping related modules together * Flexible creation of libraries with easy module listing, replacement, deletion and extraction
22.7
MPLAB SIM Software Simulator
The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break or Trace mode. The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.
22.5
MPLAB C30 C Compiler
22.8
MPLAB SIM30 Software Simulator
The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities and afford fine control of the compiler code generator. MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, timekeeping and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high-level source debugging with the MPLAB IDE.
The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins. The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high-speed simulator is designed to debug, analyze and optimize time intensive DSP routines.
DS70116C-page 160
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
22.9 MPLAB ICE 2000 High-Performance Universal In-Circuit Emulator 22.11 MPLAB ICD 2 In-Circuit Debugger
Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PICmicro MCUs and can be used to develop for these and other PICmicro microcontrollers. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial ProgrammingTM (ICSPTM) protocol, offers cost effective in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single-stepping and watching variables, CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real-time. MPLAB ICD 2 also serves as a development programmer for selected PICmicro devices.
The MPLAB ICE 2000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers. Software control of the MPLAB ICE 2000 in-circuit emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment. The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers. The MPLAB ICE 2000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft(R) Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.
22.12 PRO MATE II Universal Device Programmer
The PRO MATE II is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features an LCD display for instructions and error messages and a modular detachable socket assembly to support various package types. In Stand-Alone mode, the PRO MATE II device programmer can read, verify and program PICmicro devices without a PC connection. It can also set code protection in this mode.
22.10 MPLAB ICE 4000 High-Performance Universal In-Circuit Emulator
The MPLAB ICE 4000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for highend PICmicro microcontrollers. Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment. The MPLAB ICD 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high-speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, up to 2 Mb of emulation memory and the ability to view variables in real-time. The MPLAB ICE 4000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.
22.13 PICSTART Plus Development Programmer
The PICSTART Plus development programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus development programmer supports most PICmicro devices up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 161
DSPIC30F5011/5013
22.14 PICDEM 1 PICmicro Demonstration Board
The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs.
22.17 PICDEM 3 PIC16C92X Demonstration Board
The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.
22.18 PICDEM 4 8/14/18-Pin Demonstration Board
The PICDEM 4 can be used to demonstrate the capabilities of the 8, 14 and 18-pin PIC16XXXX and PIC18XXXX MCUs, including the PIC16F818/819, PIC16F87/88, PIC16F62XA and the PIC18F1320 family of microcontrollers. PICDEM 4 is intended to showcase the many features of these low pin count parts, including LIN and Motor Control using ECCP. Special provisions are made for low-power operation with the supercapacitor circuit and jumpers allow onboard hardware to be disabled to eliminate current draw in this mode. Included on the demo board are provisions for Crystal, RC or Canned Oscillator modes, a five volt regulator for use with a nine volt wall adapter or battery, DB-9 RS-232 interface, ICD connector for programming via ICSP and development with MPLAB ICD 2, 2 x 16 liquid crystal display, PCB footprints for H-Bridge motor driver, LIN transceiver and EEPROM. Also included are: header for expansion, eight LEDs, four potentiometers, three push buttons and a prototyping area. Included with the kit is a PIC16F627A and a PIC18F1320. Tutorial firmware is included along with the User's Guide.
22.15 PICDEM.net Internet/Ethernet Demonstration Board
The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface and a 16 x 2 LCD display. Also included is the book and CD-ROM "TCP/IP Lean, Web Servers for Embedded Systems," by Jeremy Bentham
22.19 PICDEM 17 Demonstration Board
The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board Flash memory. A generous prototype area is available for user hardware expansion.
22.16 PICDEM 2 Plus Demonstration Board
The PICDEM 2 Plus demonstration board supports many 18, 28 and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs and sample PIC18F452 and PIC16F877 Flash microcontrollers.
DS70116C-page 162
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
22.20 PICDEM 18R PIC18C601/801 Demonstration Board
The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/Demultiplexed and 16-bit Memory modes. The board includes 2 Mb external Flash memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.
22.23 PICDEM USB PIC16C7X5 Demonstration Board
The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.
22.24 Evaluation and Programming Tools
In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products. * KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products * CAN developers kit for automotive network applications * Analog design boards and filter design software * PowerSmart battery charging evaluation/ calibration kits * IrDA(R) development kit * microID development and rfLabTM development software * SEEVAL(R) designer kit for memory evaluation and endurance calculations * PICDEM MSC demo boards for Switching mode power supply, high-power IR driver, delta sigma ADC and flow rate sensor Check the Microchip web page and the latest Product Selector Guide for the complete list of demonstration and evaluation kits.
22.21 PICDEM LIN PIC16C43X Demonstration Board
The powerful LIN hardware and software kit includes a series of boards and three PICmicro microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature on-board LIN transceivers. A PIC16F874 Flash microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.
22.22 PICkitTM 1 Flash Starter Kit
A complete "development system in a box", the PICkit Flash Starter Kit includes a convenient multi-section board for programming, evaluation and development of 8/14-pin Flash PIC(R) microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the User's Guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB(R) IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin Flash PIC(R) Microcontrollers" Handbook and a USB interface cable. Supports all current 8/14-pin Flash PIC microcontrollers, as well as many future planned devices.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 163
DSPIC30F5011/5013
NOTES:
DS70116C-page 164
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
23.0 ELECTRICAL CHARACTERISTICS
This section provides an overview of dsPIC30F electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. For detailed information about the dsPIC30F architecture and core, refer to dsPIC30F Family Reference Manual (DS70046). Absolute maximum ratings for the dsPIC30F family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.
Absolute Maximum Ratings()
Ambient temperature under bias.............................................................................................................-40C to +125C Storage temperature .............................................................................................................................. -65C to +150C Voltage on any pin with respect to VSS (except VDD and MCLR) ................................................... -0.3V to (VDD + 0.3V) Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.5V Voltage on MCLR with respect to VSS (Note 1) ......................................................................................... 0V to +13.25V Total power dissipation (Note 2) ...............................................................................................................................1.0W Maximum current out of VSS pin ...........................................................................................................................300 mA Maximum current into VDD pin ..............................................................................................................................250 mA Input clamp current, IIK (VI < 0 or VI > VDD) .......................................................................................................... 20 mA Output clamp current, IOK (VO < 0 or VO > VDD) ...................................................................................................20 mA Maximum output current sunk by any I/O pin..........................................................................................................25 mA Maximum output current sourced by any I/O pin ....................................................................................................25 mA Maximum current sunk by all ports .......................................................................................................................200 mA Maximum current sourced by all ports ..................................................................................................................200 mA Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL) 2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to VSS.
NOTICE:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Note:
All peripheral electrical characteristics are specified. For exact peripherals available on specific devices, please refer the the Family Cross Reference Table.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 165
DSPIC30F5011/5013
23.1 DC Characteristics
OPERATING MIPS VS. VOLTAGE
Max MIPS VDD Range 4.5-5.5V 4.5-5.5V 3.0-3.6V 3.0-3.6V 2.5-3.0V Temp Range dsPIC30FXXX-30I -40C to 85C -40C to 125C -40C to 85C -40C to 125C -40C to 85C 30 -- 15 -- 10 dsPIC30FXXX-20I 20 -- 10 -- 7.5 dsPIC30FXXX-20E -- 20 -- 10 --
TABLE 23-1:
TABLE 23-2:
DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Min Typ(1) Max Units Conditions
DC CHARACTERISTICS
Param No.
Symbol
Operating Voltage(2) DC10 DC11 DC12 DC16 VDD VDD VDR VPOR Supply Voltage Supply Voltage RAM Data Retention Voltage(3) VDD Start Voltage to ensure internal Power-on Reset signal VDD Rise Rate to ensure internal Power-on Reset signal 2.5 2.5 -- -- -- -- 1.5 VSS 5.5 5.5 -- -- V V V V Industrial temperature Extended temperature
DC17
SVDD
0.05
V/ms 0-5V in 0.1 sec 0-3V in 60 ms
Note 1: 2: 3:
Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. These parameters are characterized but not tested in manufacturing. This is the limit to which VDD can be lowered without losing RAM data.
DS70116C-page 166
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-3: DC CHARACTERISTICS: OPERATING CURRENT (IDD)
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions
DC CHARACTERISTICS
Parameter No.
Typical(1)
Operating Current (IDD)(2) DC20 DC20a DC20b DC20c DC20d DC20e DC20f DC20g DC23 DC23a DC23b DC23c DC23d DC23e DC23f DC23g DC24 DC24a DC24b DC24c DC24d DC24e DC24f DC24g DC25 DC25a DC25b DC25c DC25d DC25e DC25f DC25g Note 1: 2: -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C 5V 3V 8 MIPS EC mode, 8X PLL 5V 3.3V 10 MIPS EC mode, 4X PLL 5V 3.3V 4 MIPS EC mode, 4X PLL 5V 3.3V 1 MIPS EC mode
Data in "Typical" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as Inputs and pulled to VDD. MCLR = VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, Program Memory and Data Memory are operational. No peripheral modules are operating.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 167
DSPIC30F5011/5013
TABLE 23-3: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions
DC CHARACTERISTICS
Parameter No.
Typical(1)
Operating Current (IDD)(2) DC27 DC27a DC27b DC27c DC27d DC27e DC27f DC28 DC28a DC28b DC28c DC28d DC28e DC28f DC29 DC29a DC29b DC29c DC30 DC30a DC30b DC30c DC30d DC30e DC30f DC30g Note 1: 2: -- TBD -- -- TBD -- -- -- TBD -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA -40C 25C 85C -40C 25C 85C 125C -40C 25C 85C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C 5V 3.3V FRC (~ 2 MIPS) 5V 30 MIPS EC mode, 16X PLL 5V 16 MIPS EC mode, 16X PLL 3.3V 5V 20 MIPS EC mode, 8X PLL 3.3V
Data in "Typical" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as Inputs and pulled to VDD. MCLR = VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, Program Memory and Data Memory are operational. No peripheral modules are operating.
DS70116C-page 168
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-3: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions
DC CHARACTERISTICS
Parameter No.
Typical(1)
Operating Current (IDD)(2) DC31 DC31a DC31b DC31c DC31d DC31e DC31f DC31g Note 1: 2: -- TBD -- -- -- TBD -- -- -- -- -- -- -- -- -- -- mA mA mA mA mA mA mA mA -40C 25C 85C 125C -40C 25C 85C 125C 5V 3.3V LPRC (~ 512 kHz)
Data in "Typical" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as Inputs and pulled to VDD. MCLR = VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, Program Memory and Data Memory are operational. No peripheral modules are operating.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 169
DSPIC30F5011/5013
TABLE 23-4: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions
DC CHARACTERISTICS
Parameter No.
Typical(1)
Idle Current (IIDLE): Core OFF Clock ON Base Current(2) DC40 DC40a DC40b DC40c DC40d DC40e DC40f DC40g DC43 DC43a DC43b DC43c DC43d DC43e DC43f DC43g DC44 DC44a DC44b DC44c DC44d DC44e DC44f DC44g DC45 DC45a DC45b DC45c DC45d DC45e DC45f DC45g Note 1: 2: -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C 5V 3.3V 8 MIPS EC mode, 8X PLL 5V 3.3V 10 MIPS EC mode, 4X PLL 5V 3.3V 4 MIPS EC mode, 4X PLL 5V 3.3V 1 MIPS EC mode
Data in "Typical" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Base IIDLE current is measured with Core off, Clock on and all modules turned off.
DS70116C-page 170
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-4: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions
DC CHARACTERISTICS
Parameter No.
Typical(1)
Idle Current (IIDLE): Core OFF Clock ON Base Current(2) DC47 DC47a DC47b DC47c DC47d DC47e DC47f DC48 DC48a DC48b DC48c DC48d DC48e DC48f DC49 DC49a DC49b DC49c DC50 DC50a DC50b DC50c DC50d DC50e DC50f DC50g DC51 DC51a DC51b DC51c DC51d DC51e DC51f DC51g Note 1: 2: -- TBD -- -- TBD -- -- -- TBD -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA -40C 25C 85C -40C 25C 85C 125C -40C 25C 85C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C 5V 3.3V LPRC (~ 512 kHz) 5V 3.3V FRC (~ 2 MIPS) 5V 30 MIPS EC mode, 16X PLL 5V 16 MIPS EC mode, 16X PLL 3.3V 5V 20 MIPS EC mode, 8X PLL 3.3V
Data in "Typical" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Base IIDLE current is measured with Core off, Clock on and all modules turned off.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 171
DSPIC30F5011/5013
TABLE 23-5: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions
DC CHARACTERISTICS
Parameter No.
Typical(1)
Power Down Current (IPD)(2) DC60 DC60a DC60b DC60c DC60d DC60e DC60f DC60g DC61 DC61a DC61b DC61c DC61d DC61e DC61f DC61g DC62 DC62a DC62b DC62c DC62d DC62e DC62f DC62g DC63 DC63a DC63b DC63c DC63d DC63e DC63f DC63g Note 1: 2: 3: -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- TBD -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C -40C 25C 85C 125C 5V 3.3V BOR On: IBOR(3) 5V 3.3V Timer 1 w/32 kHz Crystal: ITI32(3) 5V 3.3V Watchdog Timer Current: IWDT(3) 5V 3.3V Base Power Down Current(3)
Data in the Typical column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. LVD, BOR, WDT, etc. are all switched off. The current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
DS70116C-page 172
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-5: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions
DC CHARACTERISTICS
Parameter No.
Typical(1)
Power Down Current (IPD)(2) DC66 DC66a DC66b DC66c DC66d DC66e DC66f DC66g Note 1: 2: 3: -- TBD -- -- -- TBD -- -- -- -- -- -- -- -- -- -- A A A A A A A A -40C 25C 85C 125C -40C 25C 85C 125C 5V 3.3V Low Voltage Detect: ILVD(3)
Data in the Typical column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. LVD, BOR, WDT, etc. are all switched off. The current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 173
DSPIC30F5011/5013
TABLE 23-6: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Input Low Voltage(2) I/O pins: with Schmitt Trigger buffer MCLR OSC1 (in XT, HS and LP modes) OSC1 (in RC SDA, SCL SDA, SCL VIH DI20 DI25 DI26 DI27 DI28 DI29 ICNPU DI30 DI31 IIL DI50 DI51 DI55 DI56 Note 1: 2: 3: 4: Input Leakage I/O ports Analog input pins MCLR OSC1 Current(2)(4)(5) -- -- -- -- 0.01 0.50 0.05 0.05 1 -- 5 5 A A A A VSS VPIN VDD, Pin at hi-impedance VSS VPIN VDD, Pin at hi-impedance VSS VPIN VDD VSS VPIN VDD, XT, HS and LP Osc mode Input High Voltage(2) I/O pins: with Schmitt Trigger buffer MCLR OSC1 (in RC mode) SDA, SCL SDA, SCL CNXX Pull-up Current(2) 50 TBD 250 TBD 400 TBD A A VDD = 5V, VPIN = VSS VDD = 3V, VPIN = VSS
(3)
DC CHARACTERISTICS
Param Symbol No. VIL DI10 DI15 DI16 DI17 DI18 DI19
Min
Typ(1)
Max
Units
Conditions
VSS VSS VSS VSS TBD TBD
-- -- -- -- -- --
0.2 VDD 0.2 VDD 0.2 VDD 0.3 VDD TBD TBD
V V V V V V SM bus disabled SM bus enabled
mode)(3)
0.8 VDD 0.8 VDD 0.9 VDD TBD TBD
-- -- -- -- -- --
VDD VDD VDD VDD TBD TBD
V V V V V V SM bus disabled SM bus enabled
OSC1 (in XT, HS and LP modes) 0.7 VDD
5:
Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. These parameters are characterized but not tested in manufacturing. In RC oscillator configuration, the OSC1/CLKl pin is a Schmitt Trigger input. It is not recommended that the dsPIC30F device be driven with an external clock while in RC mode. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as current sourced by the pin.
DS70116C-page 174
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-7: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Output Low Voltage(2) I/O ports OSC2/CLKOUT (RC or EC Osc mode) VOH DO20 DO26 Output High Voltage(2) I/O ports OSC2/CLKOUT (RC or EC Osc mode) Capacitive Loading Specs on Output Pins(2) DO50 COSC2 OSC2/SOSC2 pin -- -- 15 pF In XTL, XT, HS and LP modes when external clock is used to drive OSC1. RC or EC Osc mode In I2C mode VDD - 0.7 TBD VDD - 0.7 TBD -- -- -- -- -- -- -- -- V V V V IOH = -3.0 mA, VDD = 5V IOH = -2.0 mA, VDD = 3V IOH = -1.3 mA, VDD = 5V IOH = -2.0 mA, VDD = 3V -- -- DO16 -- -- -- -- -- -- 0.6 TBD 0.6 TBD V V V V IOL = 8.5 mA, VDD = 5V IOL = 2.0 mA, VDD = 3V IOL = 1.6 mA, VDD = 5V IOL = 2.0 mA, VDD = 3V Min Typ(1) Max Units Conditions
DC CHARACTERISTICS
Param Symbol No. VOL DO10
DO56 DO58 Note 1: 2:
CIO CB
All I/O pins and OSC2 SCL, SDA
-- --
-- --
50 400
pF pF
Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. These parameters are characterized but not tested in manufacturing.
FIGURE 23-1:
LOW-VOLTAGE DETECT CHARACTERISTICS
VDD
LV10
LVDIF (LVDIF set by hardware)
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 175
DSPIC30F5011/5013
TABLE 23-8: ELECTRICAL CHARACTERISTICS: LVDL
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) LVDL Voltage on VDD transition LVDL = 0000(2) high to low LVDL = 0001(2) LVDL = 0010(2)
(2)
DC CHARACTERISTICS
Param No. LV10
Symbol VPLVD
Min -- -- -- -- 2.50 2.70 2.80 3.00 3.30 3.50 3.60 3.80 4.00 4.20 4.50 --
Typ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Max -- -- -- -- 2.65 2.86 2.97 3.18 3.50 3.71 3.82 4.03 4.24 4.45 4.77 --
Units V V V V V V V V V V V V V V V V
Conditions
LVDL = 0011 LVDL = 0100 LVDL = 0101 LVDL = 0110 LVDL = 0111 LVDL = 1000 LVDL = 1001 LVDL = 1010 LVDL = 1011 LVDL = 1100 LVDL = 1101 LVDL = 1110 LV15 Note 1: 2: VLVDIN External LVD input pin threshold voltage LVDL = 1111
These parameters are characterized but not tested in manufacturing. These values not in usable operating range.
FIGURE 23-2:
BROWN-OUT RESET CHARACTERISTICS
VDD BO15 (Device not in Brown-out Reset)
BO10 (Device in Brown-out Reset)
RESET (due to BOR) Power Up Time-out
DS70116C-page 176
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-9: ELECTRICAL CHARACTERISTICS: BOR
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic BOR Voltage(2) on VDD transition high to low BORV = 00(3) BORV = 01 BORV = 10 BORV = 11 BO15 Note 1: 2: 3: VBHYS Min -- 2.7 4.2 4.5 -- Typ(1) -- -- -- -- 5 Max -- 2.86 4.46 4.78 -- Units V V V V mV Conditions Not in operating range
DC CHARACTERISTICS
Param No. BO10
Symbol VBOR
Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. These parameters are characterized but not tested in manufacturing. 00 values not in usable operating range.
TABLE 23-10: DC CHARACTERISTICS: PROGRAM AND EEPROM
DC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Data EEPROM Memory(2) D120 D121 ED VDRW Byte Endurance VDD for Read/Write 100K VMIN 1M -- -- 5.5 E/W V -40C TA +85C Using EECON to read/write VMIN = Minimum operating voltage Provided no other specifications are violated Row Erase -40C TA +85C VMIN = Minimum operating voltage Min Typ(1) Max Units Conditions
Param Symbol No.
D122 D123 D124 D130 D131 D132 D133 D134 D135 D136 D137 D138 Note 1: 2:
TDEW TRETD IDEW EP VPR VEB VPEW TPEW TRETD TEB IPEW IEB
Erase/Write Cycle Time Characteristic Retention IDD During Programming Program FLASH Memory Cell Endurance VDD for Read VDD for Bulk Erase VDD for Erase/Write Erase/Write Cycle Time Characteristic Retention ICSP Block Erase Time IDD During Programming IDD During Programming
(2)
-- 40 -- 10K VMIN 4.5 3.0 -- 40 -- -- --
2 100 10 100K -- -- -- 2 100 4 10 10
-- -- 30 -- 5.5 5.5 5.5 -- -- -- 30 30
ms Year mA E/W V V V ms Year ms mA mA Row Erase Bulk Erase Provided no other specifications are violated
Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are characterized but not tested in manufacturing.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 177
DSPIC30F5011/5013
23.2 AC Characteristics and Timing Parameters
The information contained in this section defines dsPIC30F AC characteristics and timing parameters.
TABLE 23-11: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC
Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Operating voltage VDD range as described in DC Spec Section 23.0.
AC CHARACTERISTICS
FIGURE 23-3:
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load Condition 2 - for OSC2
Load Condition 1 - for all pins except OSC2 VDD/2
RL
Pin VSS
CL
Pin VSS
CL
RL = 464 CL = 50 pF for all pins except OSC2 5 pF for OSC2 output
FIGURE 23-4:
EXTERNAL CLOCK TIMING
Q4 Q1 Q2 Q3 Q4 Q1
OSC1
OS20 OS30 OS25 OS30 OS31 OS31
CLKOUT
OS40 OS41
DS70116C-page 178
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-12: EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic External CLKIN Frequency(2) (External clocks allowed only in EC mode) Oscillator Frequency(2) Min DC 4 4 4 DC 0.4 4 4 4 4 10 31 -- -- -- 33 .45 x TOSC -- -- -- Typ(1) -- -- -- -- -- -- -- -- -- -- -- -- 8 512 -- -- -- -- 6 6 Max 40 10 10 7.5 4 4 10 10 10 7.5 25 33 -- -- -- DC -- 20 10 10 Units MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz kHz MHz kHz -- ns ns ns ns ns Conditions EC EC with 4x PLL EC with 8x PLL EC with 16x PLL RC XTL XT XT with 4x PLL XT with 8x PLL XT with 16x PLL HS LP FRC internal LPRC internal See parameter OS10 for FOSC value See Table 23-14 EC EC
Param Symbol No. OS10 FOSC
OS20 OS25 OS30 OS31 OS40 OS41 Note 1: 2: 3:
TOSC TCY TosL, TosH TosR, TosF TckR TckF
TOSC = 1/FOSC Instruction Cycle Time(2)(3) External Clock(2) in (OSC1) High or Low Time External Clock(2) in (OSC1) Rise or Fall Time CLKOUT Rise Time(2)(4) CLKOUT Fall Time
(2)(4)
4:
Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. These parameters are characterized but not tested in manufacturing. Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. Measurements are taken in EC or ERC modes. The CLKOUT signal is measured on the OSC2 pin. CLKOUT is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 179
DSPIC30F5011/5013
TABLE 23-13: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.5 TO 5.5 V)
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) PLL Input Frequency Range(2) On-chip PLL Output(2) PLL Start-up Time (Lock Time) CLKOUT Stability (Jitter) Min 4 16 -- TBD Typ(2) -- -- 20 1 Max 10 120 50 TBD Units MHz MHz s % Measured over 100 ms period Conditions EC, XT modes with PLL EC, XT modes with PLL
Param No. OS50 OS51 OS52 OS53 Note 1: 2:
Symbol FPLLI FSYS TLOC DCLK
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested.
TABLE 23-14: INTERNAL CLOCK TIMING EXAMPLES
Clock Oscillator Mode EC FOSC (MHz)(1) 0.200 4 10 25 XT Note 1: 2: 3: 4 10 TCY (sec)(2) 20.0 1.0 0.4 0.16 1.0 0.4 MIPS(3) w/o PLL 0.05 1.0 2.5 25.0 1.0 2.5 MIPS(3) w PLL x4 -- 4.0 10.0 -- 4.0 10.0 MIPS(3) w PLL x8 -- 8.0 20.0 -- 8.0 20.0 MIPS(3) w PLL x16 -- 16.0 -- -- 16.0 --
Assumption: Oscillator Postscaler is divide by 1. Instruction Execution Cycle Time: TCY = 1 / MIPS. Instruction Execution Frequency: MIPS = (FOSC * PLLx) / 4 [since there are 4 Q clocks per instruction cycle].
TABLE 23-15: INTERNAL RC ACCURACY
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min Typ Max Units Conditions
Param No.
Characteristic FRC @ Freq = 8 MHz(1)
F16 F19 LPRC @ Freq = 512 kHz(2) F20 F21 Note 1: 2: 3:
TBD TBD TBD TBD
-- -- -- --
TBD TBD TBD TBD
% % % %
-40C to +85C -40C to +85C -40C to +85C -40C to +85C
VDD = 3.3V VDD = 5V VDD = 3V VDD = 5V
Frequency calibrated at 25C and 5V. TUN bits can be used to compensate for temperature drift. LPRC frequency after calibration. Change of LPRC frequency as VDD changes.
DS70116C-page 180
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 23-5: CLKOUT AND I/O TIMING CHARACTERISTICS
I/O Pin (Input) DI35 DI40 I/O Pin (Output) Old Value DO31 DO32 Note: Refer to Figure 23-3 for load conditions. New Value
TABLE 23-16: CLKOUT AND I/O TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1)(2)(3) Port output rise time Port output fall time INTx pin high or low time (output) CNx high or low time (input) Min -- -- 20 2 TCY Typ(4) 10 10 -- -- Max 25 25 -- -- Units ns ns ns ns Conditions -- -- -- --
Param No. DO31 DO32 DI35 DI40 Note 1: 2: 3: 4:
Symbol TIOR TIOF TINP TRBP
These parameters are asynchronous events not related to any internal clock edges Measurements are taken in RC mode and EC mode where CLKOUT output is 4 x TOSC. These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 181
DSPIC30F5011/5013
FIGURE 23-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS
VDD MCLR Internal POR
SY12
SY10
SY11 PWRT Time-out OSC Time-out Internal RESET Watchdog Timer RESET SY13 I/O Pins SY35 FSCM Delay Note: Refer to Figure 23-3 for load conditions. SY20 SY13 SY30
DS70116C-page 182
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-17: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) MCLR Pulse Width (low) Power-up Timer Period Min 2 TBD TBD TBD TBD 3 -- 1.8 1.9 Brown-out Reset Pulse Width(3) Oscillation Start-up Timer Period Fail-Safe Clock Monitor Delay 100 -- -- Typ(2) -- 0 4 16 64 10 -- 2.0 2.1 -- 1024 TOSC 100 Max -- TBD TBD TBD TBD 30 100 2.2 2.3 -- -- -- Units s ms Conditions -40C to +85C -40C to +85C User programmable
Param Symbol No. SY10 SY11 TmcL TPWRT
SY12 SY13 SY20
TPOR TIOZ TWDT1 TWDT2
Power On Reset Delay I/O Hi-impedance from MCLR Low or Watchdog Timer Reset Watchdog Timer Time-out Period (No Prescaler)
s ns ms ms s -- s
-40C to +85C
VDD = 5V, -40C to +85C VDD = 3V, -40C to +85C VDD VBOR (D034) TOSC = OSC1 period -40C to +85C
SY25 SY30 SY35 Note 1: 2: 3:
TBOR TOST TFSCM
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Refer to Figure 23-2 and Table 23-9 for BOR.
FIGURE 23-7:
BAND GAP START-UP TIME CHARACTERISTICS
VBGAP
0V Enable Band Gap (see Note) SY40 Band Gap Stable
Note: Set LVDEN bit (RCON<12>) or FBORPOR<7>set.
TABLE 23-18: BAND GAP START-UP TIME REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min -- Typ(2) 20 Max 50 Units s Conditions Defined as the time between the instant that the band gap is enabled and the moment that the band gap reference voltage is stable. RCON<13>Status bit
Param No. SY40
Symbol TBGAP
Characteristic(1) Band Gap Start-up Time
Note 1: 2:
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 183
DSPIC30F5011/5013
FIGURE 23-8: TYPE A, B AND C TIMER EXTERNAL CLOCK TIMING CHARACTERISTICS
TxCK Tx10 Tx15
OS60
Tx11 Tx20
TMRX
Note: Refer to Figure 23-3 for load conditions.
TABLE 23-19: TYPE A TIMER (TIMER1) EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic TxCK High Time Synchronous, no prescaler Synchronous, with prescaler Asynchronous TA11 TTXL TxCK Low Time Synchronous, no prescaler Synchronous, with prescaler Asynchronous TA15 TTXP TxCK Input Period Synchronous, no prescaler Synchronous, with prescaler Asynchronous OS60 Ft1 SOSC1/T1CK oscillator input frequency range (oscillator enabled by setting bit TCS (T1CON, bit 1)) Min 0.5 TCY + 20 10 10 0.5 TCY + 20 10 10 TCY + 10 Greater of: 20 ns or (TCY + 40)/N 20 DC Typ -- -- -- -- -- -- -- -- Max -- -- -- -- -- -- -- -- Units ns ns ns ns ns ns ns -- N = prescale value (1, 8, 64, 256) Must also meet parameter TA15 Conditions Must also meet parameter TA15
Param No. TA10
Symbol TTXH
-- --
-- 50
ns kHz
TA20 Note:
TCKEXTMRL Delay from External TQCK Clock Edge to Timer Increment Timer1 is a Type A.
2 TOSC
6 TOSC
--
DS70116C-page 184
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-20: TYPE B TIMER (TIMER2 AND TIMER4) EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic TxCK High Time Synchronous, no prescaler Synchronous, with prescaler TB11 TtxL TxCK Low Time Synchronous, no prescaler Synchronous, with prescaler TB15 TtxP TxCK Input Period Synchronous, no prescaler Synchronous, with prescaler TB20 Note: TCKEXTMRL Delay from External TQCK Clock Edge to Timer Increment Timer2 and Timer4 are Type B. Min 0.5 TCY + 20 10 0.5 TCY + 20 10 TCY + 10 Greater of: 20 ns or (TCY + 40)/N 2 TOSC -- 6 TOSC -- Typ -- -- -- -- -- Max -- -- -- -- -- Units ns ns ns ns ns N = prescale value (1, 8, 64, 256) Must also meet parameter TB15 Conditions Must also meet parameter TB15
Param No. TB10
Symbol TtxH
TABLE 23-21: TYPE C TIMER (TIMER3 AND TIMER5) EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic TxCK High Time TxCK Low Time Synchronous Synchronous Min 0.5 TCY + 20 0.5 TCY + 20 TCY + 10 Greater of: 20 ns or (TCY + 40)/N 2 TOSC -- 6 TOSC -- Typ -- -- -- Max -- -- -- Units ns ns ns Conditions Must also meet parameter TC15 Must also meet parameter TC15 N = prescale value (1, 8, 64, 256)
Param No. TC10 TC11 TC15
Symbol TtxH TtxL TtxP
TxCK Input Period Synchronous, no prescaler Synchronous, with prescaler
TC20 Note:
TCKEXTMRL Delay from External TQCK Clock Edge to Timer Increment Timer3 and Timer5 are Type C.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 185
DSPIC30F5011/5013
FIGURE 23-9: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS
ICX
IC10 IC15 Note: Refer to Figure 23-3 for load conditions.
IC11
TABLE 23-22: INPUT CAPTURE TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) ICx Input Low Time ICx Input High Time ICx Input Period No Prescaler With Prescaler IC11 IC15 Note 1: TccH TccP No Prescaler With Prescaler Min 0.5 TCY + 20 10 0.5 TCY + 20 10 (2 TCY + 40)/N Max -- -- -- -- -- Units ns ns ns ns ns N = prescale value (1, 4, 16) Conditions
Param No. IC10
Symbol TccL
These parameters are characterized but not tested in manufacturing.
FIGURE 23-10:
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS
OCx (Output Compare or PWM Mode)
OC11
OC10
Note: Refer to Figure 23-3 for load conditions.
TABLE 23-23: OUTPUT COMPARE MODULE TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min -- -- Typ(2) 10 10 Max 25 25 Units ns ns Conditions -- --
Param Symbol No. OC10 OC11 Note 1: 2: TccF TccR
Characteristic(1) OCx Output Fall Time OCx Output Rise Time
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested.
DS70116C-page 186
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 23-11: OC/PWM MODULE TIMING CHARACTERISTICS
OC20 OCFA/OCFB OC15 OCx
TABLE 23-24: SIMPLE OC/PWM MODE TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min -- -- Typ(2) -- -- Max 25 TBD 50 TBD Note 1: 2: Units ns ns ns ns VDD = 3V VDD = 5V VDD = 3V VDD = 5V -40C to +85C Conditions -40C to +85C
Param Symbol No. OC15 TFD OC20 TFLT
Characteristic(1) Fault Input to PWM I/O Change Fault Input Pulse Width
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 187
DSPIC30F5011/5013
FIGURE 23-12: DCI MODULE (MULTICHANNEL, I2S MODES) TIMING CHARACTERISTICS
CSCK (SCKE = 1) CS11 CSCK (SCKE = 0) CS20 COFS CS55 CS56 CS35 CS51 CSDO HIGH-Z CS50 MSb CS30 CSDI MSb IN CS40 CS41 CS31 LSb IN LSb 70 HIGH-Z CS21 CS10 CS21 CS20
Note: Refer to Figure 23-3 for load conditions.
DS70116C-page 188
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-25: DCI MODULE (MULTICHANNEL, I2S MODES) TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) CSCK Input Low Time (CSCK pin is an input) CSCK Output Low Time(3) (CSCK pin is an output) CS11 TcSCKH CSCK Input High Time (CSCK pin is an input) CSCK Output High Time(3) (CSCK pin is an output) CS20 CS21 CS30 CS31 CS35 CS36 CS40 TcSCKF TcSCKR TcSDOF TcSDOR TDV TDIV TCSDI CSCK Output Fall Time(4) (CSCK pin is an output) CSCK Output Rise Time(4) (CSCK pin is an output) CSDO Data Output Fall Time(4) CSDO Data Output Rise Time(4) Clock edge to CSDO data valid Clock edge to CSDO tri-stated Setup time of CSDI data input to CSCK edge (CSCK pin is input or output) Hold time of CSDI data input to CSCK edge (CSCK pin is input or output) COFS Fall Time (COFS pin is output) COFS Rise Time (COFS pin is output) Setup time of COFS data input to CSCK edge (COFS pin is input) Hold time of COFS data input to CSCK edge (COFS pin is input) Min TCY / 2 + 20 30 TCY / 2 + 20 30 -- -- -- -- -- 10 20 Typ(2) -- -- -- -- 10 10 10 10 -- -- -- Max -- -- -- -- 25 25 25 25 10 20 -- Units ns ns ns ns ns ns ns ns ns ns ns Conditions -- -- -- -- -- -- -- -- -- -- --
Param No. CS10
Symbol TcSCKL
CS41
THCSDI
20
--
--
ns
--
CS50 CS51 CS55 CS56 Note 1: 2: 3: 4:
TcoFSF TcoFSR TscoFS THCOFS
-- -- 20 20
10 10 -- --
25 25 -- --
ns ns ns ns
Note 1 Note 1 -- --
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all DCI pins.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 189
DSPIC30F5011/5013
FIGURE 23-13:
BIT_CLK (CSCK) CS61 CS60 CS62 CS21 CS20
DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS
CS71 CS72
CS70
SYNC (COFS) CS76 CS80 CS75
SDO (CSDO)
LSb
MSb
LSb CS76 CS75
SDI (CSDI)
MSb IN CS65 CS66
TABLE 23-26: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1)(2) Min Typ(3) Max Units Conditions
Param No. CS60 CS61 CS62 CS65
Symbol TBCLKL TBCLKH TBCLK TSACL
BIT_CLK Low Time 36 40.7 45 ns -- BIT_CLK High Time 36 40.7 45 ns -- BIT_CLK Period -- 81.4 -- ns Bit clock is input Input Setup Time to -- -- 10 ns -- Falling Edge of BIT_CLK Input Hold Time from -- -- 10 ns -- CS66 THACL Falling Edge of BIT_CLK -- 19.5 -- s Note 1 CS70 TSYNCLO SYNC Data Output Low Time CS71 TSYNCHI SYNC Data Output High Time -- 1.3 -- s Note 1 CS72 TSYNC SYNC Data Output Period -- 20.8 -- s Note 1 CS75 TRACL Rise Time, SYNC, SDATA_OUT -- 10 25 ns CLOAD = 50 pF, VDD = 5V CS76 TFACL Fall Time, SYNC, SDATA_OUT -- 10 25 ns CLOAD = 50 pF, VDD = 5V CS77 TRACL Rise Time, SYNC, SDATA_OUT -- TBD TBD ns CLOAD = 50 pF, VDD = 3V CS78 TFACL Fall Time, SYNC, SDATA_OUT -- TBD TBD ns CLOAD = 50 pF, VDD = 3V CS80 TOVDACL Output valid delay from rising -- -- 15 ns -- edge of BIT_CLK Note 1: These parameters are characterized but not tested in manufacturing. 2: These values assume BIT_CLK frequency is 12.288 MHz. 3: Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested.
DS70116C-page 190
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 23-14:
SCKx (CKP = 0) SP11 SCKx (CKP = 1) SP35 SP20 SP21 SP10
SPI MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS
SP21
SP20
SDOx SP31 SDIx
MSb
BIT14 - - - - - -1 SP30 BIT14 - - - -1
LSb
MSb IN SP40 SP41
LSb IN
Note: Refer to Figure 23-3 for load conditions.
TABLE 23-27: SPI MASTER MODE (CKE = 0) TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) SCKX Output Low Time(3) SCKX Output High SCKX Output Rise Time(3) Time(4) Time(4) SCKX Output Fall Time(4 SDOX Data Output Fall Time(4) SDOX Data Output Rise SDOX Data Output Valid after SCKX Edge Setup Time of SDIX Data Input to SCKX Edge Hold Time of SDIX Data Input to SCKX Edge Min TCY / 2 TCY / 2 -- -- -- -- -- 20 20 Typ(2) -- -- 10 10 10 10 -- -- -- Max -- -- 25 25 25 25 30 -- -- Units ns ns ns ns ns ns ns ns ns Conditions -- -- -- -- -- -- -- -- --
Param No. SP10 SP11 SP20 SP21 SP30 SP31 SP35 SP40 SP41 Note 1: 2: 3: 4:
Symbol TscL TscH TscF TscR TdoF TdoR TscH2doV, TscL2doV TdiV2scH, TdiV2scL TscH2diL, TscL2diL
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPI pins.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 191
DSPIC30F5011/5013
FIGURE 23-15: SPI MODULE MASTER MODE (CKE =1) TIMING CHARACTERISTICS
SP36 SCKX (CKP = 0) SP11 SP10 SP21 SP20
SCKX (CKP = 1) SP35 SP20 SP21
SDOX
MSb SP40
BIT14 - - - - - -1 SP30,SP31 BIT14 - - - -1
LSb
SDIX
MSb IN SP41
LSb IN
Note: Refer to Figure 23-3 for load conditions.
TABLE 23-28: SPI MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) SCKX output low time(3) SCKX output high SCKX output rise time(3) time(4) time(4) SCKX output fall time(4) SDOX data output fall time(4) SDOX data output rise Min TCY / 2 TCY / 2 -- -- -- -- -- 30 20 20 Typ(2) -- -- 10 10 10 10 -- -- -- -- Max -- -- 25 25 25 25 30 -- -- -- Units ns ns ns ns ns ns ns ns ns ns Conditions -- -- -- -- -- -- -- -- -- --
Param No. SP10 SP11 SP20 SP21 SP30 SP31 SP35 SP36 SP40 SP41 Note 1: 2: 3: 4:
Symbol TscL TscH TscF TscR TdoF TdoR
TscH2doV, SDOX data output valid after TscL2doV SCKX edge TdoV2sc, SDOX data output setup to TdoV2scL first SCKX edge TdiV2scH, Setup time of SDIX data input TdiV2scL to SCKX edge TscH2diL, TscL2diL Hold time of SDIX data input to SCKX edge
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCK is 100 ns. Therefore, the clock generated in master mode must not violate this specification. Assumes 50 pF load on all SPI pins.
DS70116C-page 192
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 23-16:
SSX SP50 SCKX (CKP = 0) SP11 SP10 SP20 SP21 SP52
SPI MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS
SCKX (CKP = 1) SP20 SP35 SDOX MSb BIT14 - - - - - -1 SP30,SP31 SDIX SDI MSb IN SP41 SP40 BIT14 - - - -1 LSb IN LSb SP51 SP21
Note: Refer to Figure 23-3 for load conditions.
TABLE 23-29: SPI MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) SCKX Input Low Time SCKX Input High Time SCKX Output Fall Time(3) SCKX Output Rise Time(3) SDOX Data Output Fall Time
(3)
Param No. SP10 SP11 SP20 SP21 SP30 SP31 SP35 SP40 SP41 SP50 SP51 Note 1: 2: 3:
Symbol TscL TscH TscF TscR TdoF TdoR
Min 30 30 -- -- -- -- -- 20 20 120 10
Typ(2) -- -- 10 10 10 10 -- -- -- -- --
Max -- -- 25 25 25 25 30 -- -- -- 50
Units ns ns ns ns ns ns ns ns ns ns ns
Conditions -- -- -- -- -- -- -- -- -- -- --
SDOX Data Output Rise Time(3)
TscH2doV, SDOX Data Output Valid after TscL2doV SCKX Edge TdiV2scH, Setup Time of SDIX Data Input TdiV2scL to SCKX Edge TscH2diL, Hold Time of SDIX Data Input TscL2diL to SCKX Edge TssL2scH, SSX to SCKX or SCKX Input TssL2scL TssH2doZ SSX to SDOX Output Hi-Impedance(3)
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Assumes 50 pF load on all SPI pins.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 193
DSPIC30F5011/5013
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) Min 1.5 TCY +40 Typ(2) -- Max -- Units ns Conditions --
Param No. SP52 Note 1: 2: 3:
Symbol
TscH2ssH SSX after SCK Edge TscL2ssH
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Assumes 50 pF load on all SPI pins.
FIGURE 23-17:
SSX
SPI MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS
SP60
SP50 SCKX (CKP = 0) SP11 SCKX (CKP = 1) SP35 SP52 SDOX MSb BIT14 - - - - - -1 SP30,SP31 SDIX SDI MSb IN SP41 SP40 BIT14 - - - -1 LSb IN SP20 LSb SP10 SP20
SP52
SP21
SP21
SP51
Note: Refer to Figure 23-3 for load conditions.
DS70116C-page 194
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-30: SPI MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) SCKX Input Low Time SCKX Input High Time SCKX Output Fall Time(3) SCKX Output Rise Time(3) SDOX Data Output Fall Time
(3)
Param No. SP10 SP11 SP20 SP21 SP30 SP31 SP35 SP40 SP41 SP50 SP51 SP52 SP60 Note 1: 2: 3: 4:
Symbol TscL TscH TscF TscR TdoF TdoR
Min 30 30 -- -- -- -- -- 20 20 120 10 1.5 TCY + 40 --
Typ(2) -- -- 10 10 10 10 -- -- -- -- -- -- --
Max -- -- 25 25 25 25 30 -- -- -- 50 -- 50
Units ns ns ns ns ns ns ns ns ns ns ns ns ns
Conditions -- -- -- -- -- -- -- -- -- -- -- -- --
SDOX Data Output Rise Time(3)
TscH2doV, SDOX Data Output Valid after TscL2doV SCKX Edge TdiV2scH, Setup Time of SDIX Data Input TdiV2scL to SCKX Edge TscH2diL, Hold Time of SDIX Data Input TscL2diL to SCKX Edge TssL2scH, SSX to SCKX or SCKX input TssL2scL TssH2doZ SS to SDOX Output Hi-Impedance(4) TscH2ssH SSX after SCKX Edge TscL2ssH TssL2doV SDOX Data Output Valid after SCKX Edge
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCK is 100 ns. Therefore, the clock generated in master mode must not violate this specification. Assumes 50 pF load on all SPI pins.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 195
DSPIC30F5011/5013
FIGURE 23-18: I2C BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)
SCL
IM30
IM31 IM33
IM34
SDA
Start Condition Note: Refer to Figure 23-3 for load conditions.
Stop Condition
FIGURE 23-19:
I2C BUS DATA TIMING CHARACTERISTICS (MASTER MODE)
IM20 IM11 IM10 IM21
SCL
IM11 IM10 IM26 IM25 IM33
SDA In
IM40 IM40 IM45
SDA Out Note: Refer to Figure 23-3 for load conditions.
DS70116C-page 196
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-31: I2C BUS DATA TIMING REQUIREMENTS (MASTER MODE)
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Min(1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) -- 20 + 0.1 CB -- -- 20 + 0.1 CB -- 250 100 TBD 0 0 TBD TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) TCY / 2 (BRG + 1) -- -- -- 4.7 1.3 TBD -- Max -- -- -- -- -- -- 300 300 100 1000 300 300 -- -- -- -- 0.9 -- -- -- -- -- -- -- -- -- -- -- -- -- 3500 1000 -- -- -- -- 400 Units ms ms ms ms ms ms ns ns ns ns ns ns ns ns ns ns ms ns ms ms ms ms ms ms ms ms ms ns ns ns ns ns ns ms ms ms pF -- -- -- Time the bus must be free before a new transmission can start -- Only relevant for repeated Start condition After this period the first clock pulse is generated -- -- -- CB is specified to be from 10 to 400 pF Conditions -- -- -- -- -- -- CB is specified to be from 10 to 400 pF
Param Symbol No. IM10
TLO:SCL Clock Low Time 100 kHz mode 400 kHz mode 1 MHz mode(2)
IM11
THI:SCL
Clock High Time 100 kHz mode 400 kHz mode 1 MHz mode
(2)
IM20
TF:SCL
SDA and SCL Fall Time
100 kHz mode 400 kHz mode 1 MHz mode(2) 100 kHz mode 400 kHz mode 1 MHz mode(2) 100 kHz mode 400 kHz mode 1 MHz mode(2) 100 kHz mode 400 kHz mode 1 MHz mode(2) 100 kHz mode 400 kHz mode 1 MHz mode(2) 100 kHz mode 400 kHz mode 1 MHz mode(2) 100 kHz mode 400 kHz mode 1 MHz mode(2) 100 kHz mode 400 kHz mode 1 MHz mode(2) 100 kHz mode 400 kHz mode 1 MHz mode(2) 100 kHz mode 400 kHz mode 1 MHz mode(2)
IM21
TR:SCL
SDA and SCL Rise Time
IM25
TSU:DAT Data Input Setup Time
IM26
THD:DAT Data Input Hold Time
IM30
TSU:STA
Start Condition Setup Time
IM31
THD:STA Start Condition Hold Time
IM33
TSU:STO Stop Condition Setup Time
IM34
THD:STO Stop Condition Hold Time
IM40
TAA:SCL
Output Valid From Clock
IM45
TBF:SDA Bus Free Time
IM50 Note 1: 2:
CB
Bus Capacitive Loading I2C
BRG is the value of the Baud Rate Generator. Refer to Section 21 "Inter-Integrated CircuitTM (I2C)" in the dsPIC30F Family Reference Manual. Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 197
DSPIC30F5011/5013
FIGURE 23-20: I2C BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)
SCL
IS30
IS31 IS33
IS34
SDA
Start Condition
Stop Condition
FIGURE 23-21:
I2C BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)
IS20 IS11 IS10 IS21
SCL
IS30 IS31 IS26 IS25 IS33
SDA In
IS40 IS40 IS45
SDA Out
DS70116C-page 198
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-32: I2C BUS DATA TIMING REQUIREMENTS (SLAVE MODE)
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Clock Low Time 100 kHz mode 400 kHz mode 1 MHz mode(1) IS11 THI:SCL Clock High Time 100 kHz mode 400 kHz mode 1 MHz mode(1) 100 kHz mode 400 kHz mode 1 MHz mode(1) 100 kHz mode 400 kHz mode 1 MHz mode(1) 100 kHz mode 400 kHz mode 1 MHz mode(1) 100 kHz mode 400 kHz mode 1 MHz mode(1) 100 kHz mode 400 kHz mode 1 MHz mode(1) 100 kHz mode 400 kHz mode 1 MHz mode(1) 100 kHz mode 400 kHz mode 1 MHz mode(1) 100 kHz mode 400 kHz mode 1 MHz mode(1) Min 4.7 1.3 0.5 4.0 0.6 0.5 -- 20 + 0.1 CB -- -- 20 + 0.1 CB -- 250 100 100 0 0 0 4.7 0.6 0.25 4.0 0.6 0.25 4.7 0.6 0.6 4000 600 250 0 0 0 4.7 1.3 0.5 -- Max -- -- -- -- -- -- 300 300 100 1000 300 300 -- -- -- -- 0.9 0.3 -- -- -- -- -- -- -- -- -- -- -- 3500 1000 350 -- -- -- 400 Units s s s s s s ns ns ns ns ns ns ns ns ns ns s s s s s s s s s s s ns ns ns ns ns ns s s s pF -- Only relevant for repeated Start condition After this period the first clock pulse is generated -- -- Conditions Device must operate at a minimum of 1.5 MHz Device must operate at a minimum of 10 MHz. -- Device must operate at a minimum of 1.5 MHz Device must operate at a minimum of 10 MHz -- CB is specified to be from 10 to 400 pF CB is specified to be from 10 to 400 pF --
Param No. IS10
Symbol TLO:SCL
IS20
TF:SCL
SDA and SCL Fall Time SDA and SCL Rise Time Data Input Setup Time Data Input Hold Time Start Condition Setup Time Start Condition Hold Time Stop Condition Setup Time Stop Condition Hold Time
IS21
TR:SCL
IS25
TSU:DAT
IS26
THD:DAT
IS30
TSU:STA
IS31
THD:STA
IS33
TSU:STO
IS34
THD:STO
--
IS40
TAA:SCL
Output Valid From 100 kHz mode Clock 400 kHz mode Bus Free Time 1 MHz mode(1) 100 kHz mode 400 kHz mode 1 MHz mode(1)
IS45
TBF:SDA
Time the bus must be free before a new transmission can start --
IS50 Note 1:
CB
Bus Capacitive Loading
Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 199
DSPIC30F5011/5013
FIGURE 23-22: CAN MODULE I/O TIMING CHARACTERISTICS
CXTX Pin (output)
Old Value CA10 CA11
New Value
CXRX Pin (input) CA20
TABLE 23-33: CAN MODULE I/O TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic(1) Port Output Fall Time Port Output Rise Time Pulse Width to Trigger CAN Wakeup Filter Min -- -- 500 Typ(2) 10 10 Max 25 25 Units ns ns ns Conditions -- -- --
Param No. CA10 CA11 CA20 Note 1: 2:
Symbol TioF TioR Tcwf
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 5V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested.
DS70116C-page 200
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
TABLE 23-34: 12-BIT A/D MODULE SPECIFICATIONS
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Min. Typ Max. Units Conditions
Param No.
Symbol
Device Supply AD01 AVDD Module VDD Supply Greater of VDD - 0.3 or 2.7 VSS - 0.3 AVSS + 2.7 AVSS AVSS - 0.3 -- -- Lesser of VDD + 0.3 or 5.5 VSS + 0.3 AVDD AVDD - 2.7 AVDD + 0.3 300 3 VREFH AVDD + 0.3 0.001 0.610 V --
AD02 AD05 AD06 AD07 AD08
AVSS VREFH VREFL VREF IREF
Module VSS Supply Reference Voltage High Reference Voltage Low Absolute Reference Voltage Current Drain
-- -- -- -- 200 .001
V V V V A A V V A
-- -- -- -- A/D operating A/D off See Note -- VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V Source Impedance = 2.5 k VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V Source Impedance = 2.5 k -- -- --
Reference Inputs
Analog Input AD10 AD11 AD12 VINH-VINL Full-Scale Input Span VIN -- Absolute Input Voltage Leakage Current VREFL AVSS - 0.3 --
AD13
--
Leakage Current
--
0.001
0.610
A
AD15 AD16 AD17
RSS CSAMPLE RIN
Switch Resistance Sample Capacitor Recommended Impedance of Analog Voltage Source Resolution Integral Nonlinearity Integral Nonlinearity Differential Nonlinearity Differential Nonlinearity Gain Error Gain Error
-- -- --
3.2K 18 --
-- 2.5K
pF
DC Accuracy AD20 AD21 Nr INL 12 data bits -- -- -- -- -- -- 0.75 0.75 0.5 0.5 1.25 1.25 TBD TBD < 1 < 1 TBD TBD bits LSb LSb LSb LSb LSb LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD21A INL AD22 DNL
AD22A DNL AD23 GERR
AD23A GERR Note 1:
The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 201
DSPIC30F5011/5013
TABLE 23-34: 12-BIT A/D MODULE SPECIFICATIONS (CONTINUED)
AC CHARACTERISTICS Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Offset Error Offset Error Monotonicity(1) Common-Mode Rejection Power Supply Rejection Ratio Channel to Channel Crosstalk Total Harmonic Distortion Signal to Noise and Distortion Spurious Free Dynamic Range Input Signal Bandwidth Effective Number of Bits Min. -- -- -- -- -- -- Typ 1.25 1.25 -- TBD TBD TBD Max. TBD TBD -- -- -- -- Units LSb LSb -- dB dB dB Conditions VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V Guaranteed -- -- --
Param No. AD24
Symbol EOFF
AD24A EOFF AD25 AD26 AD27 AD28 -- CMRR PSRR CTLK
Dynamic Performance AD30 AD31 AD32 AD33 AD34 Note 1: THD SINAD SFDR FNYQ ENOB -- -- -- -- -- -- TBD TBD -- TBD -- -- -- 50 TBD dB dB dB kHz bits -- -- -- -- --
The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.
DS70116C-page 202
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
FIGURE 23-23: 12-BIT A/D CONVERSION TIMING CHARACTERISTICS (ASAM = 0, SSRC = 000)
AD50 ADCLK Instruction Execution BSF SAMP SAMP ch0_dischrg ch0_samp eoc AD61 AD60 TSAMP DONE ADIF ADRES(0) AD55 BCF SAMP
1
2
3
4
5
6
7
8
9
1 - Software sets ADCON. SAMP to start sampling. 2 - Sampling starts after discharge period. TSAMP is described in the dsPIC30F Family Reference Manual, Section 18. 3 - Software clears ADCON. SAMP to start conversion. 4 - Sampling ends, conversion sequence starts. 5 - Convert bit 11. 6 - Convert bit 10. 7 - Convert bit 1. 8 - Convert bit 0. 9 - One TAD for end of conversion.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 203
DSPIC30F5011/5013
TABLE 23-35: 12-BIT A/D CONVERSION TIMING REQUIREMENTS
AC CHARACTERISTICS Standard Operating Conditions: 2.7V to 5.5V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Min. Typ Max. Units Conditions
Param No.
Symbol
Clock Parameters AD50 AD51 AD55 AD56 AD57 TAD tRC tCONV FCNV TSAMP A/D Clock Period A/D Internal RC Oscillator Period Conversion Time Throughput Rate Sampling Time -- 1.2 -- -- -- 667 1.5 14 TAD -- 1 TAD -- 1.8 -- 100 -- ns s ns ksps ns VDD = 3-5.5V (Note 1) -- -- VDD = VREF = 5V VDD = 3-5.5V source resistance RS = 0-2.5 k -- -- -- --
Conversion Rate
Timing Parameters AD60 AD61 AD62 AD63 Note 1: 2: tPCS tPSS tCSS tDPU Conversion Start from Sample Trigger Sample Start from Setting Sample (SAMP) Bit Conversion Completion to Sample Start (ASAM = 1) Time to Stabilize Analog Stage from A/D Off to A/D On -- 0.5 TAD -- -- -- -- -- -- TAD 1.5 TAD TBD TBD ns ns ns s
Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. These parameters are characterized but not tested in manufacturing.
DS70116C-page 204
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
24.0
24.1
PACKAGING INFORMATION
Package Marking Information
64-Lead TQFP Example
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN
dsPIC30F 5011-I/PT 0348017
80-Lead TQFP
Example
XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN
dsPIC30F5013 -I/PT 0348017
Legend: XX...X Y YY WW NNN
Customer specific information* Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week `01') Alphanumeric traceability code
Note:
In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.
*
Standard device marking consists of Microchip part number, year code, week code, and traceability code. For device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 205
DSPIC30F5011/5013
64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)
E E1 #leads=n1 p
D1
D
2 1 B n CH x 45 A c A2 L A1 (F)
Number of Pins Pitch Pins per Side Overall Height Molded Package Thickness Standoff Foot Length Footprint (Reference) Foot Angle Overall Width Overall Length Molded Package Width Molded Package Length Lead Thickness Lead Width Pin 1 Corner Chamfer Mold Draft Angle Top Mold Draft Angle Bottom * Controlling Parameter Significant Characteristic
Units Dimension Limits n p n1 A A2 A1 L (F) E D E1 D1 c B CH
MIN
.039 .037 .002 .018 0 .463 .463 .390 .390 .005 .007 .025 5 5
INCHES NOM 64 .020 16 .043 .039 .006 .024 .039 3.5 .472 .472 .394 .394 .007 .009 .035 10 10
MAX
MIN
.047 .041 .010 .030 7 .482 .482 .398 .398 .009 .011 .045 15 15
MILLIMETERS* NOM 64 0.50 16 1.00 1.10 0.95 1.00 0.05 0.15 0.45 0.60 1.00 0 3.5 11.75 12.00 11.75 12.00 9.90 10.00 9.90 10.00 0.13 0.18 0.17 0.22 0.64 0.89 5 10 5 10
MAX
1.20 1.05 0.25 0.75 7 12.25 12.25 10.10 10.10 0.23 0.27 1.14 15 15
Notes: Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-085
DS70116C-page 206
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)
E E1 #leads=n1 p
D1
D
B
2 1
n
CH x 45 A
c
L A1 (F) Units Dimension Limits n p n1 A A2 A1 L (F) E D E1 D1 c B CH INCHES NOM 80 .020 20 .043 .039 .004 .024 .039 3.5 .551 .551 .472 .472 .006 .009 .035 10 10 MILLIMETERS* NOM 80 0.50 20 1.00 1.10 0.95 1.00 0.05 0.10 0.45 0.60 1.00 0 3.5 13.75 14.00 13.75 14.00 11.75 12.00 11.75 12.00 0.09 0.15 0.17 0.22 0.64 0.89 5 10 5 10
A2
MIN
MAX
MIN
MAX
Number of Pins Pitch Pins per Side Overall Height Molded Package Thickness Standoff Foot Length Footprint (Reference) Foot Angle Overall Width Overall Length Molded Package Width Molded Package Length Lead Thickness Lead Width Pin 1 Corner Chamfer Mold Draft Angle Top Mold Draft Angle Bottom * Controlling Parameter Significant Characteristic
.039 .037 .002 .018 0 .541 .541 .463 .463 .004 .007 .025 5 5
.047 .041 .006 .030 7 .561 .561 .482 .482 .008 .011 .045 15 15
1.20 1.05 0.15 0.75 7 14.25 14.25 12.25 12.25 0.20 0.27 1.14 15 15
Notes: Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-092
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 207
DSPIC30F5011/5013
NOTES:
DS70116C-page 208
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
INDEX
Numerics
12-bit Analog-to-Digital Converter (A/D) Module .............. 127 CAN Buffers and Protocol Engine ............................ 106 DCI Module............................................................... 118 Dedicated Port Structure ............................................ 57 DSP Engine ................................................................ 16 DSPIC30F5011.............................................................. 6 dsPIC30F5013.............................................................. 7 External Power-on Reset Circuit .............................. 143 I2C .............................................................................. 90 Input Capture Mode.................................................... 77 Oscillator System...................................................... 137 Output Compare Mode ............................................... 81 Reset System ........................................................... 141 Shared Port Structure................................................. 58 SPI.............................................................................. 86 SPI Master/Slave Connection..................................... 86 UART Receiver........................................................... 98 UART Transmitter....................................................... 97 BOR Characteristics ......................................................... 177 BOR. See Brown-out Reset. Brown-out Reset Characteristics.......................................................... 176 Timing Requirements ............................................... 183
A
A/D .................................................................................... 127 Aborting a Conversion .............................................. 129 ADCHS Register ....................................................... 127 ADCON1 Register..................................................... 127 ADCON2 Register..................................................... 127 ADCON3 Register..................................................... 127 ADCSSL Register ..................................................... 127 ADPCFG Register..................................................... 127 Configuring Analog Port Pins.............................. 58, 132 Connection Considerations....................................... 132 Conversion Operation ............................................... 128 Effects of a Reset...................................................... 131 Operation During CPU Idle Mode ............................. 131 Operation During CPU Sleep Mode.......................... 131 Output Formats ......................................................... 131 Power-down Modes .................................................. 131 Programming the Sample Trigger............................. 129 Register Map............................................................. 133 Result Buffer ............................................................. 128 Sampling Requirements............................................ 130 Selecting the Conversion Clock ................................ 129 Selecting the Conversion Sequence......................... 128 TAD vs. Device Operating Frequencies..................... 129 AC Characteristics ............................................................ 178 Load Conditions ........................................................ 178 AC Temperature and Voltage Specifications .................... 178 AC-Link Mode Operation .................................................. 124 16-bit Mode ............................................................... 124 20-bit Mode ............................................................... 124 Address Generator Units .................................................... 33 Alternate Vector Table ........................................................ 43 Analog-to-Digital Converter. See A/D. Assembler MPASM Assembler................................................... 159 Automatic Clock Stretch...................................................... 92 During 10-bit Addressing (STREN = 1)....................... 92 During 7-bit Addressing (STREN = 1)......................... 92 Receive Mode ............................................................. 92 Transmit Mode ............................................................ 92
C
C Compilers MPLAB C17.............................................................. 160 MPLAB C18.............................................................. 160 MPLAB C30.............................................................. 160 CAN Module ..................................................................... 105 Baud Rate Setting .................................................... 110 CAN1 Register Map.................................................. 112 CAN2 Register Map.................................................. 114 Frame Types ............................................................ 105 I/O Timing Characteristics ........................................ 200 I/O Timing Requirements.......................................... 200 Message Reception.................................................. 108 Message Transmission............................................. 109 Modes of Operation .................................................. 107 Overview................................................................... 105 CLKOUT and I/O Timing Characteristics.......................................................... 181 Requirements ........................................................... 181 Code Examples Data EEPROM Block Erase ....................................... 52 Data EEPROM Block Write ........................................ 54 Data EEPROM Read.................................................. 51 Data EEPROM Word Erase ....................................... 52 Data EEPROM Word Write ........................................ 53 Erasing a Row of Program Memory ........................... 47 Initiating a Programming Sequence ........................... 48 Loading Write Latches ................................................ 48 Code Protection ................................................................ 135 Control Registers ................................................................ 46 NVMADR .................................................................... 46 NVMADRU ................................................................. 46 NVMCON.................................................................... 46 NVMKEY .................................................................... 46 Core Architecture Overview..................................................................... 11 CPU Architecture Overview ................................................ 11
B
Bandgap Start-up Time Requirements............................................................ 183 Timing Characteristics .............................................. 183 Barrel Shifter ....................................................................... 19 Bit-Reversed Addressing .................................................... 36 Example ...................................................................... 36 Implementation ........................................................... 36 Modifier Values Table ................................................. 37 Sequence Table (16-Entry)......................................... 37 Block Diagrams 12-bit A/D Functional ................................................ 127 16-bit Timer1 Module .................................................. 63 16-bit Timer2............................................................... 69 16-bit Timer3............................................................... 69 16-bit Timer4............................................................... 74 16-bit Timer5............................................................... 74 32-bit Timer2/3............................................................ 68 32-bit Timer4/5............................................................ 73
D
Data Accumulators and Adder/Subtractor .......................... 17 Data Space Write Saturation ...................................... 19 Overflow and Saturation ............................................. 17 Round Logic ............................................................... 18
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 209
DSPIC30F5011/5013
Write Back................................................................... 18 Data Address Space ........................................................... 25 Alignment .................................................................... 28 Alignment (Figure) ...................................................... 28 Effect of Invalid Memory Accesses (Table)................. 28 MCU and DSP (MAC Class) Instructions Example..... 27 Memory Map ......................................................... 25, 26 Near Data Space ........................................................ 29 Software Stack ............................................................ 29 Spaces ........................................................................ 28 Width ........................................................................... 28 Data Converter Interface (DCI) Module ............................ 117 Data EEPROM Memory ...................................................... 51 Erasing ........................................................................ 52 Erasing, Block ............................................................. 52 Erasing, Word ............................................................. 52 Protection Against Spurious Write .............................. 55 Reading....................................................................... 51 Write Verify ................................................................. 55 Writing ......................................................................... 53 Writing, Block .............................................................. 54 Writing, Word .............................................................. 53 DC Characteristics ............................................................ 166 BOR .......................................................................... 177 Brown-out Reset ....................................................... 176 I/O Pin Input Specifications ....................................... 174 I/O Pin Output Specifications .................................... 175 Idle Current (IIDLE) .................................................... 170 Low-Voltage Detect................................................... 175 LVDL ......................................................................... 176 Operating Current (IDD)............................................. 167 Power-Down Current (IPD) ........................................ 172 Program and EEPROM............................................. 177 Temperature and Voltage Specifications .................. 166 DCI Module Bit Clock Generator................................................... 121 Buffer Alignment with Data Frames .......................... 122 Buffer Control ............................................................ 117 Buffer Data Alignment ............................................... 117 Buffer Length Control ................................................ 122 COFS Pin .................................................................. 117 CSCK Pin .................................................................. 117 CSDI Pin ................................................................... 117 CSDO Mode Bit ........................................................ 123 CSDO Pin ................................................................. 117 Data Justification Control Bit ..................................... 121 Device Frequencies for Common Codec CSCK Frequencies (Table)............................... 121 Digital Loopback Mode ............................................. 123 Enable ....................................................................... 119 Frame Sync Generator ............................................. 119 Frame Sync Mode Control Bits ................................. 119 I/O Pins ..................................................................... 117 Interrupts ................................................................... 123 Introduction ............................................................... 117 Master Frame Sync Operation .................................. 119 Operation .................................................................. 119 Operation During CPU Idle Mode ............................. 124 Operation During CPU Sleep Mode .......................... 124 Receive Slot Enable Bits........................................... 122 Receive Status Bits ................................................... 123 Register Map............................................................. 125 Sample Clock Edge Control Bit................................. 121 Slave Frame Sync Operation .................................... 120 Slot Enable Bits Operation with Frame Sync ............ 122 Slot Status Bits ......................................................... 123 Synchronous Data Transfers .................................... 122 Timing Characteristics AC-Link Mode................................................... 190 Multichannel, I2S Modes................................... 188 Timing Requirements AC-Link Mode................................................... 190 Multichannel, I2S Modes................................... 189 Transmit Slot Enable Bits ......................................... 121 Transmit Status Bits.................................................. 123 Transmit/Receive Shift Register ............................... 117 Underflow Mode Control Bit...................................... 123 Word Size Selection Bits .......................................... 119 Demonstration Boards PICDEM 1................................................................. 162 PICDEM 17............................................................... 162 PICDEM 18R ............................................................ 163 PICDEM 2 Plus......................................................... 162 PICDEM 3................................................................. 162 PICDEM 4................................................................. 162 PICDEM LIN ............................................................. 163 PICDEM USB ........................................................... 163 PICDEM.net Internet/Ethernet .................................. 162 Development Support ....................................................... 159 Device Configuration Register Map ............................................................ 149 Device Configuration Registers FBORPOR ................................................................ 147 FGS .......................................................................... 147 FOSC........................................................................ 147 FWDT ....................................................................... 147 Device Overview................................................................... 5 Disabling the UART ............................................................ 99 Divide Support .................................................................... 14 Instructions (Table) ..................................................... 14 DSP Engine ........................................................................ 15 Multiplier ..................................................................... 17 Dual Output Compare Match Mode .................................... 82 Continuous Pulse Mode.............................................. 82 Single Pulse Mode...................................................... 82
E
Electrical Characteristics .................................................. 165 AC............................................................................. 178 DC ............................................................................ 166 Enabling and Setting Up UART Alternate I/O ............................................................... 99 Setting Up Data, Parity and Stop Bit Selections ......... 99 Enabling the UART ............................................................. 99 Equations A/D Conversion Clock............................................... 129 Baud Rate................................................................. 101 Bit Clock Frequency.................................................. 121 COFSG Period.......................................................... 119 Serial Clock Rate ........................................................ 94 Time Quantum for Clock Generation ........................ 111 Errata .................................................................................... 4 Evaluation and Programming Tools.................................. 163 Exception Sequence Trap Sources .............................................................. 41 External Clock Timing Characteristics Type A, B and C Timer ............................................. 184 External Clock Timing Requirements ............................... 179 Type A Timer ............................................................ 184 Type B Timer ............................................................ 185 Type C Timer ............................................................ 185
DS70116C-page 210
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
External Interrupt Requests ................................................ 43
F
Fast Context Saving............................................................ 43 Flash Program Memory ...................................................... 45
I
I/O Pin Specifications Input .......................................................................... 174 Output ....................................................................... 175 I/O Ports .............................................................................. 57 Parallel (PIO) .............................................................. 57 I2C 10-bit Slave Mode Operation ........................................ 91 Reception.................................................................... 91 Transmission............................................................... 91 I2C 7-bit Slave Mode Operation .......................................... 91 Reception.................................................................... 91 Transmission............................................................... 91 I2C Master Mode Operation ................................................ 93 Baud Rate Generator.................................................. 94 Clock Arbitration.......................................................... 94 Multi-Master Communication, Bus Collision and Bus Arbitration .................................................... 94 Reception.................................................................... 93 Transmission............................................................... 93 I2C Master Mode Support ................................................... 93 I2C Module .......................................................................... 89 Addresses ................................................................... 91 Bus Data Timing Characteristics Master Mode ..................................................... 196 Slave Mode ....................................................... 198 Bus Data Timing Requirements Master Mode ..................................................... 197 Slave Mode ....................................................... 199 Bus Start/Stop Bits Timing Characteristics Master Mode ..................................................... 196 Slave Mode ....................................................... 198 General Call Address Support .................................... 93 Interrupts..................................................................... 92 IPMI Support ............................................................... 93 Operating Function Description .................................. 89 Operation During CPU Sleep and Idle Modes ............ 94 Pin Configuration ........................................................ 89 Programmer's Model................................................... 89 Register Map............................................................... 95 Registers..................................................................... 89 Slope Control .............................................................. 93 Software Controlled Clock Stretching (STREN = 1).... 92 Various Modes ............................................................ 89 I2S Mode Operation .......................................................... 124 Data Justification....................................................... 124 Frame and Data Word Length Selection................... 124 Idle Current (IIDLE) ............................................................ 170 In-Circuit Serial Programming (ICSP) ......................... 45, 135 Input Capture (CAPX) Timing Characteristics .................. 186 Input Capture Module ......................................................... 77 Interrupts..................................................................... 78 Register Map............................................................... 79 Input Capture Operation During Sleep and Idle Modes ...... 78 CPU Idle Mode............................................................ 78 CPU Sleep Mode ........................................................ 78 Input Capture Timing Requirements ................................. 186 Input Change Notification Module ....................................... 61 DSPIC30F5011 Register Map (Bits 15-8) .................... 61 DSPIC30F5011 Register Map (Bits 7-0) ...................... 61 dsPIC30F5013 Register Map (Bits 15-8) .................... 61
dsPIC30F5013 Register Map (Bits 7-0)...................... 61 Instruction Addressing Modes ............................................ 33 File Register Instructions ............................................ 33 Fundamental Modes Supported ................................. 33 MAC Instructions ........................................................ 34 MCU Instructions ........................................................ 33 Move and Accumulator Instructions ........................... 34 Other Instructions ....................................................... 34 Instruction Set Overview................................................................... 154 Summary .................................................................. 151 Internal Clock Timing Examples ....................................... 180 Interrupt Controller Register Map .............................................................. 44 Interrupt Priority .................................................................. 40 Traps .......................................................................... 41 Interrupt Sequence ............................................................. 43 Interrupt Stack Frame................................................. 43 Interrupts ............................................................................ 39
L
Load Conditions................................................................ 178 Low Voltage Detect (LVD) ................................................ 146 Low-Voltage Detect Characteristics.................................. 175 LVDL Characteristics ........................................................ 176
M
Memory Organization ......................................................... 21 Core Register Map ..................................................... 30 Modes of Operation Disable...................................................................... 107 Initialization............................................................... 107 Listen All Messages.................................................. 107 Listen Only................................................................ 107 Loopback .................................................................. 107 Normal Operation ..................................................... 107 Modulo Addressing ............................................................. 34 Applicability................................................................. 36 Incrementing Buffer Operation Example .................... 35 Start and End Address ............................................... 35 W Address Register Selection.................................... 35 MPLAB ASM30 Assembler, Linker, Librarian ................... 160 MPLAB ICD 2 In-Circuit Debugger ................................... 161 MPLAB ICE 2000 High-Performance Universal In-Circuit Emulator................................................... 161 MPLAB ICE 4000 High-Performance Universal In-Circuit Emulator................................................... 161 MPLAB Integrated Development Environment Software.. 159 MPLINK Object Linker/MPLIB Object Librarian ................ 160
N
NVM Register Map .............................................................. 49
O
OC/PWM Module Timing Characteristics ......................... 187 Operating Current (IDD) .................................................... 167 Operating Frequency vs Voltage dsPIC30FXXXX-20 (Extended) ................................ 166 Oscillator Configurations .......................................................... 138 Fail-Safe Clock Monitor .................................... 140 Fast RC (FRC).................................................. 139 Initial Clock Source Selection ........................... 138 Low Power RC (LPRC)..................................... 139 LP Oscillator Control......................................... 138
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 211
DSPIC30F5011/5013
Phase Locked Loop (PLL) ................................ 139 Start-up Timer (OST) ........................................ 138 Operating Modes (Table) .......................................... 136 System Overview ...................................................... 135 Oscillator Selection ........................................................... 135 Oscillator Start-up Timer Timing Characteristics .............................................. 182 Timing Requirements ................................................ 183 Output Compare Interrupts ................................................. 83 Output Compare Module..................................................... 81 Register Map............................................................... 84 Timing Characteristics .............................................. 186 Timing Requirements ................................................ 186 Output Compare Operation During CPU Idle Mode............ 83 Output Compare Sleep Mode Operation............................. 83 Program and EEPROM Characteristics............................ 177 Program Counter ................................................................ 12 Programmable .................................................................. 135 Programmer's Model .......................................................... 12 Diagram ...................................................................... 13 Programming Operations.................................................... 47 Algorithm for Program Flash....................................... 47 Erasing a Row of Program Memory............................ 47 Initiating the Programming Sequence......................... 48 Loading Write Latches ................................................ 48 Protection Against Accidental Writes to OSCCON ........... 140
R
Reset ........................................................................ 135, 141 BOR, Programmable ................................................ 143 Brown-out Reset (BOR)............................................ 135 Oscillator Start-up Timer (OST) ................................ 135 POR Operating without FSCM and PWRT................ 143 With Long Crystal Start-up Time ...................... 143 POR (Power-on Reset)............................................. 141 Power-on Reset (POR)............................................. 135 Power-up Timer (PWRT) .......................................... 135 Reset Sequence ................................................................. 41 Reset Sources ............................................................ 41 Reset Sources Brown-out Reset (BOR).............................................. 41 Illegal Instruction Trap ................................................ 41 Trap Lockout............................................................... 41 Uninitialized W Register Trap ..................................... 41 Watchdog Time-out .................................................... 41 Reset Timing Characteristics............................................ 182 Reset Timing Requirements ............................................. 183 Run-Time Self-Programming (RTSP) ................................. 45
P
Packaging Information ...................................................... 205 Marking ..................................................................... 205 Peripheral Module Disable (PMD) Registers .................... 148 PICkit 1 Flash Starter Kit................................................... 163 PICSTART Plus Development Programmer ..................... 161 Pinout Descriptions ............................................................... 8 PLL Clock Timing Specifications....................................... 180 POR. See Power-on Reset. Port Write/Read Example.................................................... 58 PORTA Register Map for dsPIC30F5013 ................................ 59 PORTB Register Map for DSPIC30F5011/5013 ....................... 59 PORTC Register Map for DSPIC30F5011 ................................ 59 Register Map for dsPIC30F5013 ................................ 59 PORTD Register Map for DSPIC30F5011 ................................ 60 Register Map for dsPIC30F5013 ................................ 60 PORTF Register Map for DSPIC30F5011 ................................ 60 Register Map for dsPIC30F5013 ................................ 60 PORTG Register Map for DSPIC30F5011/5013 ....................... 60 Power Saving Modes ........................................................ 146 Idle ............................................................................ 147 Sleep ......................................................................... 146 Sleep and Idle ........................................................... 135 Power-Down Current (IPD) ................................................ 172 Power-up Timer Timing Characteristics .............................................. 182 Timing Requirements ................................................ 183 PRO MATE II Universal Device Programmer ................... 161 Program Address Space ..................................................... 21 Construction ................................................................ 22 Data Access from Program Memory Using Program Space Visibility........................... 24 Data Access From Program Memory Using Table Instructions ..................................... 23 Data Access from, Address Generation...................... 22 Data Space Window into Operation ............................ 25 Data Table Access (LS Word) .................................... 23 Data Table Access (MS Byte) ..................................... 24 Memory Map ............................................................... 21 Table Instructions TBLRDH.............................................................. 23 TBLRDL .............................................................. 23 TBLWTH ............................................................. 23 TBLWTL.............................................................. 23
S
Simple Capture Event Mode............................................... 77 Buffer Operation ......................................................... 78 Hall Sensor Mode ....................................................... 78 Prescaler .................................................................... 77 Timer2 and Timer3 Selection Mode............................ 78 Simple OC/PWM Mode Timing Requirements ................. 187 Simple Output Compare Match Mode ................................ 82 Simple PWM Mode ............................................................. 82 Input Pin Fault Protection ........................................... 82 Period ......................................................................... 83 Software Simulator (MPLAB SIM) .................................... 160 Software Simulator (MPLAB SIM30) ................................ 160 Software Stack Pointer, Frame Pointer .............................. 12 CALL Stack Frame ..................................................... 29 SPI Module ......................................................................... 85 Framed SPI Support ................................................... 85 Operating Function Description .................................. 85 Operation During CPU Idle Mode ............................... 87 Operation During CPU Sleep Mode............................ 87 SDOx Disable ............................................................. 85 Slave Select Synchronization ..................................... 87 SPI1 Register Map...................................................... 88 SPI2 Register Map...................................................... 88 Timing Characteristics Master Mode (CKE = 0).................................... 191 Master Mode (CKE = 1).................................... 192 Slave Mode (CKE = 1).............................. 193, 194 Timing Requirements Master Mode (CKE = 0).................................... 191 Master Mode (CKE = 1).................................... 192
DS70116C-page 212
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
Slave Mode (CKE = 0) ...................................... 193 Slave Mode (CKE = 1) ...................................... 195 Word and Byte Communication .................................. 85 Status Bits, Their Significance and the Initialization Condition for RCON Register, Case 1 ..................... 144 Status Bits, Their Significance and the Initialization Condition for RCON Register, Case 2 ..................... 145 Status Register ................................................................... 12 Symbols Used in Opcode Descriptions............................. 152 System Integration ............................................................ 135 Register Map............................................................. 149 Master Mode (CKE = 1).................................... 192 Slave Mode (CKE = 0)...................................... 193 Slave Mode (CKE = 1)...................................... 194 Type A, B and C Timer External Clock ..................... 184 Watchdog Timer ....................................................... 182 Timing Diagrams CAN Bit..................................................................... 110 Frame Sync, AC-Link Start of Frame ....................... 120 Frame Sync, Multi-Channel Mode ............................ 120 I2S Interface Frame Sync ......................................... 120 PWM Output ............................................................... 83 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 ..................... 142 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 ..................... 142 Time-out Sequence on Power-up (MCLR Tied to VDD) ......................................... 142 Timing Diagrams and Specifications DC Characteristics - Internal RC Accuracy .............. 180 Timing Diagrams.See Timing Characteristics Timing Requirements A/D Conversion Low-speed ........................................................ 204 Bandgap Start-up Time ............................................ 183 Brown-out Reset....................................................... 183 CAN Module I/O ....................................................... 200 CLKOUT and I/O ...................................................... 181 DCI Module AC-Link Mode................................................... 190 Multichannel, I2S Modes................................... 189 External Clock .......................................................... 179 I2C Bus Data (Master Mode) .................................... 197 I2C Bus Data (Slave Mode) ...................................... 199 Input Capture............................................................ 186 Oscillator Start-up Timer........................................... 183 Output Compare Module .......................................... 186 Power-up Timer ........................................................ 183 Reset ........................................................................ 183 Simple OC/PWM Mode ............................................ 187 SPI Module Master Mode (CKE = 0).................................... 191 Master Mode (CKE = 1).................................... 192 Slave Mode (CKE = 0)...................................... 193 Slave Mode (CKE = 1)...................................... 195 Type A Timer External Clock .................................... 184 Type B Timer External Clock .................................... 185 Type C Timer External Clock.................................... 185 Watchdog Timer ....................................................... 183 Timing Specifications PLL Clock ................................................................. 180 Trap Vectors ....................................................................... 42
T
Table Instruction Operation Summary ................................ 45 Temperature and Voltage Specifications AC ............................................................................. 178 DC............................................................................. 166 Timer1 Module .................................................................... 63 16-bit Asynchronous Counter Mode ........................... 63 16-bit Synchronous Counter Mode ............................. 63 16-bit Timer Mode....................................................... 63 Gate Operation ........................................................... 64 Interrupt....................................................................... 64 Operation During Sleep Mode .................................... 64 Prescaler..................................................................... 64 Real-Time Clock ......................................................... 64 Interrupts............................................................. 65 Oscillator Operation ............................................ 65 Register Map............................................................... 66 Timer2 and Timer3 Selection Mode .................................... 82 Timer2/3 Module ................................................................. 67 16-bit Timer Mode....................................................... 67 32-bit Synchronous Counter Mode ............................. 67 32-bit Timer Mode....................................................... 67 ADC Event Trigger...................................................... 70 Gate Operation ........................................................... 70 Interrupt....................................................................... 70 Operation During Sleep Mode .................................... 70 Register Map............................................................... 71 Timer Prescaler........................................................... 70 Timer4/5 Module ................................................................. 73 Register Map............................................................... 75 Timing Characteristics A/D Conversion Low-speed (ASAM = 0, SSRC = 000) .............. 203 Bandgap Start-up Time............................................. 183 CAN Module I/O........................................................ 200 CLKOUT and I/O....................................................... 181 DCI Module AC-Link Mode ................................................... 190 Multichannel, I2S Modes ................................... 188 External Clock........................................................... 178 I2C Bus Data Master Mode ..................................................... 196 Slave Mode ....................................................... 198 I2C Bus Start/Stop Bits Master Mode ..................................................... 196 Slave Mode ....................................................... 198 Input Capture (CAPX) ............................................... 186 OC/PWM Module ...................................................... 187 Oscillator Start-up Timer ........................................... 182 Output Compare Module........................................... 186 Power-up Timer ........................................................ 182 Reset......................................................................... 182 SPI Module Master Mode (CKE = 0) .................................... 191
U
UART Module Address Detect Mode ............................................... 101 Auto Baud Support ................................................... 102 Baud Rate Generator ............................................... 101 Enabling and Setting Up............................................. 99 Framing Error (FERR) .............................................. 101 Idle Status................................................................. 101 Loopback Mode ........................................................ 101 Operation During CPU Sleep and Idle Modes.......... 102 Overview..................................................................... 97 Parity Error (PERR) .................................................. 101 Receive Break .......................................................... 101 Receive Buffer (UxRXB)........................................... 100
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 213
DSPIC30F5011/5013
Receive Buffer Overrun Error (OERR Bit) ................ 100 Receive Interrupt....................................................... 100 Receiving Data.......................................................... 100 Receiving in 8-bit or 9-bit Data Mode........................ 100 Reception Error Handling.......................................... 100 Transmit Break.......................................................... 100 Transmit Buffer (UxTXB)............................................. 99 Transmit Interrupt...................................................... 100 Transmitting Data........................................................ 99 Transmitting in 8-bit Data Mode .................................. 99 Transmitting in 9-bit Data Mode .................................. 99 UART1 Register Map ................................................ 103 UART2 Register Map ................................................ 103 UART Operation Idle Mode .................................................................. 102 Sleep Mode ............................................................... 102 Unit ID Locations............................................................... 135 Universal Asynchronous Receiver Transmitter (UART) Module ........................................................... 97
W
Wake-up from Sleep ......................................................... 135 Wake-up from Sleep and Idle ............................................. 43 Watchdog Timer Timing Characteristics .............................................. 182 Timing Requirements................................................ 183 Watchdog Timer (WDT)............................................ 135, 146 Enabling and Disabling ............................................. 146 Operation .................................................................. 146 WWW, On-Line Support ....................................................... 4
DS70116C-page 214
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
ON-LINE SUPPORT
Microchip provides on-line support on the Microchip World Wide Web site. The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape(R) or Microsoft(R) Internet Explorer. Files are also available for FTP download from our FTP site.
SYSTEMS INFORMATION AND UPGRADE HOT LINE
The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits.The Hot Line Numbers are: 1-800-755-2345 for U.S. and most of Canada, and 1-480-792-7302 for the rest of the world. 042003
Connecting to the Microchip Internet Web Site
The Microchip web site is available at the following URL: www.microchip.com The file transfer site is available by using an FTP service to connect to: ftp://ftp.microchip.com The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is: * Latest Microchip Press Releases * Technical Support Section with Frequently Asked Questions * Design Tips * Device Errata * Job Postings * Microchip Consultant Program Member Listing * Links to other useful web sites related to Microchip Products * Conferences for products, Development Systems, technical information and more * Listing of seminars and events
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 215
DSPIC30F5011/5013
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: RE: Technical Publications Manager Reader Response Total Pages Sent ________
From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ Application (optional): Would you like a reply? Y N Literature Number: DS70116C FAX: (______) _________ - _________
Device: DSPIC30F5011/5013 Questions:
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
DS70116C-page 216
Preliminary
2004 Microchip Technology Inc.
DSPIC30F5011/5013
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
d s P I C 3 0 F 5 0 1 3 AT - 3 0 I / P T- E S
Trademark Architecture Package TQFP 10x10 TQFP 12x12 Die (Waffle Pack) Die (Wafers) Custom ID (3 digits) or Engineering Sample (ES)
Flash Memory Size in Bytes
0 = ROMless 1 = 1K to 6K 2 = 7K to 12K 3 = 13K to 24K 4 = 25K to 48K 5 = 49K to 96K 6 = 97K to 192K 7 = 193K to 384K 8 = 385K to 768K 9 = 769K and Up
PT PT S W
= = = =
Temperature I = Industrial -40C to +85C E = Extended High Temp -40C to +125C Speed 20 = 20 MIPS 30 = 30 MIPS T = Tape and Reel A,B,C... = Revision Level
Device ID
Example: dsPIC30F5013AT-30I/PT = 30 MIPS, Industrial temp., TQFP package, Rev. A
2004 Microchip Technology Inc.
Preliminary
DS70116C-page 217
WORLDWIDE SALES AND SERVICE
AMERICAS
Corporate Office
2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: www.microchip.com
China - Beijing
Unit 706B Wan Tai Bei Hai Bldg. No. 6 Chaoyangmen Bei Str. Beijing, 100027, China Tel: 86-10-85282100 Fax: 86-10-85282104
Korea
168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934
Singapore
200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850
China - Chengdu
Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599
Atlanta
3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307
Taiwan
Kaohsiung Branch 30F - 1 No. 8 Min Chuan 2nd Road Kaohsiung 806, Taiwan Tel: 886-7-536-4818 Fax: 886-7-536-4803
Boston
2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821
China - Fuzhou
Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521
Taiwan
Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
Chicago
333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431
Dallas
4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924
EUROPE
Austria
Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393
China - Shanghai
Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
Detroit
Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260
Denmark
Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45-4420-9895 Fax: 45-4420-9910
China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-8295-1393
Kokomo
2767 S. Albright Road Kokomo, IN 46902 Tel: 765-864-8360 Fax: 765-864-8387
France
Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
China - Shunde
Room 401, Hongjian Building, No. 2 Fengxiangnan Road, Ronggui Town, Shunde District, Foshan City, Guangdong 528303, China Tel: 86-757-28395507 Fax: 86-757-28395571
Los Angeles
18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338
China - Qingdao
Rm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205
Germany
Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44
San Jose
1300 Terra Bella Avenue Mountain View, CA 94043 Tel: 650-215-1444 Fax: 650-961-0286
India
Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-22290061 Fax: 91-80-22290062
Italy
Via Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781
Toronto
6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509
Japan
Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Netherlands
Waegenburghtplein 4 NL-5152 JR, Drunen, Netherlands Tel: 31-416-690399 Fax: 31-416-690340
ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
United Kingdom
505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44-118-921-5869 Fax: 44-118-921-5820
05/28/04
DS70116C-page 218
Preliminary
2004 Microchip Technology Inc.


▲Up To Search▲   

 
Price & Availability of DSPIC30F5011

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X